
A Kernel Running in a DSM -

Design Aspects of a Distributed Operating System

R. Goeckelmann, M. Schoettner, S. Frenz and P. Schulthess

Department of Distributed Systems, University of Ulm, 89075 Ulm, Germany

goeckelmann@vs.informatik.uni-ulm.de

Abstract: The Plurix project implements an object-oriented Operating System (OS) for PC clusters.

Communication is achieved via shared objects in a Distributed Shared Memory (DSM) - using restartable

transactions and an optimistic synchronization scheme to guarantee memory consistency. We contend that

coupling object orientation with the DSM property allows a type-consistent system bootstrapping, quick

system startup and simplified development of distributed applications. It also facilitates checkpointing of

the system state. The OS (including kernel and drivers) is written in Java using our proprietary Plurix Java

Compiler (PJC) translating Java source code directly into Intel machine instructions. PJC is an integral

part of the language-based OS and tailor-made for compiling in our persistent DSM environment. In this

paper we briefly illustrate the architecture of our OS kernel which runs entirely in the DSM and the

resulting opportunities for checkpointing and communication between applications and OS. We present

issues of memory management related to the DSM-kernel and to strategies to avoid false-sharing .

Keywords: Cluster Operating System, Distributed Shared Memory, Reliability,

Object-Orientation, Single System Image

1

1 Introduction

Typical cluster systems are built on top of traditional operating systems (OS) as Linux or Microsoft

Windows and data is exchanged using message passing (e.g. MPI) or remote invocation (e.g. RPC,RMI)

strategies. As each node in a cluster is running its own OS with different configurations, the migration of

processes is difficult, as it is unknown which libraries and resources will be available on the next node.

Additionally, if a process is migrated to another node, the entire context including relevant parts of the

kernel state must be saved and transferred. Because these OSs are not designed for cluster operation it is

difficult to migrate kernel contexts [Smile] and as a consequence cluster systems typically redirect calls of

migrated processes back to the home node, e.g. Mosix [Mosix].

Plurix is an OS specifically tailored for cluster operation and avoids these difficulties. The Distributed

Shared Memory (DSM) offers an elegant solution for distributing and sharing data among loosely coupled

nodes [Keedy],[Li]. Applications running on top of the Plurix DSM are unaware of the physical location

of objects. A reference can either point to a local or to a remote memory block. During program execution

the OS detects a remote memory access and automatically fetches the desired memory block. Plurix

extends the DSM to a distributed heap storage, providing the benefit, that not only data but also the code

segments of the programs are available on each node as they are shared in the DSM.

One of our major research goals is to simplify the development of distributed applications. Typically,

DSM systems use weak consistency models to guarantee the integrity of shared data. This makes the

development of applications hard, as each programmer must explicitly manage the consistency of the data

by using the offered synchronization mechanism [TreadMarks]. Plurix uses a strong consistency model,

called transactional consistency [Wende02] relieving the programmer from explicit consistency

management.

Single-System-Image (SSI) computing architectures have been the mainstay of high performance

computing for many years. In a system implementing the SSI concept, each user gains a global and

uniform view on available resources and programs and provides the same libraries and services on each

node in the cluster, which is very important for load balancing and migration of processes. We extend the

2

SSI concept by storing OS, kernel, and all drivers in the DSM. As a consequence we can implement a

type-safe kernel interface and at the same time simplify checkpointing and recovery.

In 1990 Fuchs introduced checkpointing and recovery for DSM systems [Fuchs90]. Numerous

subsequent papers discuss the adaptation of checkpointing strategies designed for message-passing

systems ranging from global coordinated solutions to independent checkpointing with and without logging

[Morin97]. However, the more sophisticated solutions have not been evaluated in real implementations

because checkpointing is difficult to achieve in PC-clusters even under global coordination. If a

checkpoint needs to be saved it is not sufficient to save the DSM context but also the local kernel context

needs to be saved - which is not trivial. Plurix avoids these drawbacks by storing OS and applications in

the DSM.

The remainder of the paper is organized as follows. The design of Plurix is briefly presented in

section 2. We then describe the advantages of a type-safe kernel interface. In the sequel we describe the

benefits of running the kernel within the DSM. Extending the SSI provides additional advantages for the

checkpointing, which are described in section 5. Finally, we present measurements and give an outlook on

future work.

2 Design of Plurix

Plurix implements SSI properties at the operating system level, using a page-based distributed shared

memory. According to the SSI concept all programs and libraries must be available on all nodes in the

cluster. Therefore Plurix uses a global address space shared by all nodes and organized as

distributed heap storage (DHS) containing both data and code. To share the programs in the DHS

reduces redundancy concerning code segments and makes the administration of the system easier.

2.1 Java-based Kernel and Operating System

Plurix is entirely written in Java and works in a fully object oriented fashion. The development of an

operating system requires access to device registers which is not possible in standard Java. For this reason

we have developed our own Plurix Java Compiler (PJC) with language extensions to support hardware

3

level programming. The compiler directly generates Intel machine instructions and initializes runtime

structures and code segments in the heap. Traditional object-, symbol-, library- and exe-files are avoided.

Each new program is compiled directly into the DHS and is thereby immediately available at

each node.

Plurix is designed as a lean and high speed OS and therefore able to start quickly. The start time of the

primary node, which creates a new heap (installation of Plurix) or restarts an preexisting heap from the

PageServer, is less than one second. Additional nodes, which only have to join the existing heap, can be

started in approximately 250 ms. This quick boot function of Plurix is helpful to guarantee fast node and

cluster start-up time, which helps to avoid long downtimes in case of critical errors.

2.2 Distributed Shared Memory

The transfer of the DHS-objects from one cluster node to a new one is managed within the page-based

distributed shared memory (DSM), and takes advantage of the Memory Management Unit (MMU)

hardware. The MMU detects page faults, which are raised if a node requests an object on a page which is

not locally present. Each page fault results in a separate network packet which contains the address of the

missing page (PageRequest). This packet is broadcast to all nodes in the cluster (Fast Ethernet LAN) and

only the current owner of the page send it to the requesting node.

An important topic in distributed systems is the consistency of shared and replicated objects. In Plurix

this is synonymous to the consistency of the DSM. Plurix offers a new consistency model, called

transactional consistency, which is described in the following section.

2.3 Consistency and Restartability

Unlike traditional systems, Plurix does not burden the programmer with the consistency of the DHS-

objects. All actions in Plurix are encapsulated in transactions. At the start of a transaction, write access to

pages are prohibited. If a page is written, the system creates a shadow image of it and then enables write

access. Additionally, the system logs the pages for which shadow images were created. At the end of a

transaction (commit phase) the addresses of all modified pages are broadcasted and all partner nodes in the

4

cluster will invalidate these pages. If there is a collision with a running transaction on another node, it is

aborted and eventually restarted.

In case of an abort all modified pages are discarded. Since there is a shadow image for each modified

page, the system can reconstruct the state of the node at the time just before the transaction has been

started. A token mechanism is used to ensure, that only one node is in the commit phase at a time. The

token is passed using a first wins strategy. To improve fairness further commit strategies will be

developed.

2.4 False Sharing and Backchain

All page-based DSM systems suffer from the notorious false-sharing syndrome. False-sharing occurs,

if two or more nodes access separate objects which nevertheless reside on the same page. If a node writes

to such an object, all other nodes are forced to abort their current transaction and restart it later. As these

objects are not shared, such an abort is semantically unjustified and unnecessarily slows down the entire

cluster. To handle this problem relocation of DSM-objects from one physical page to an other is required.

When an object is relocated, all pointers to this object are adjusted. Due to the substantial network latency

in the cluster environment, it is not possible to inspect each object whether contains a pointer to the

relocated object. To adjust the affected references, Plurix uses the backchain [Traub]. This concept links

together all references to an object, by recording the addresses of these pointers (see fig. 1). All references

to a relocated DSM-object are found in the backchain. To reduce invalidations of remote objects when a

new backchain entry is inserted, references on the stack are not tracked in the backchain.

5

Figure 1 The Backchain Concept

DSM

object

backchain

pointer

2.5 Garbage Collection

The previously described backchain concept can also be used to simplify a distributed garbage

collection (GC). A Mark-and-Sweep algorithm should not be used in a DHS-environment, because it is

either very difficult to implement (incremental Mark-and-Sweep) or it would stop the entire cluster while

collecting garbage. Copying GC algorithms will unduly reduce the available address space - only

reference counting algorithms appear feasible. The backchain can be used as a reference counter. If an

object contains an empty backchain, no references to this object remain. This is equivalent to a reference

counter of 0, so in this case the object is garbage and can be deleted. Because stack references are not

included in the backchain, the GC may only run if the stack is empty. Between two transactions this

condition is always true, and that the GC task can be run as a regular Plurix transaction.

3 A Type-Safe Interface for a DSM-Kernel

The SSI concept requires, that all nodes in the cluster have the same programs installed. In a distributed

environment the easiest why to achieve this goal is to share not only data but also the code of the

programs, for this reason the Plurix extends the DSM to the DHS. In this case it is mandatory to protect

the code segments from unwanted modification either by corrupted pointers or by malicious attacks. This

can be achieved by using a type-safe language like Java. Language-based OS development has been

successfully demonstrated by the Oberon system [Wirth]. The requirement for type safety in the DSM

affects also the interface to the OS. As data in the DSM is represented by objects and these data must be

passed to the kernel, either the objects must be serialized before they are used as parameters or the kernel

must be able to accept objects.

3.1 Traditional Kernel interfaces

Traditionally, distributed systems are implemented as a middleware layer on top of a local OS, such as

Linux or Mach, which are mostly written in C and therefore do not provide objects. The communication

between the distributed system and the local OS takes place using primitive data types or structures. If the

kernel cannot handle objects as such, they are serialized (and data items are copied) before being passed to

6

the kernel. This kind of raw communication does not provide type checks for parameters and signatures by

the runtime environment. Hence no type-safe calls of kernel methods are possible and each kernel method

has to check explicitly its parameters to avoid runtime errors.

3.2 Benefits of a Type-Safe Kernel Interface

To reduce programming complexity and to increase system performance we recommend to pass typed

objects to the kernel. This was part of the motivation to create Plurix as a stand alone OS not as a

middleware layer. Since the kernel of Plurix is written in Java and easily handles objects, a type-safe

communication between the DSM applications and the OS is natural. All Java types and objects, can be

handed to the kernel methods. The programmer has no need to pay attention to the type of the passed

object because this is checked by the compiler and in some cases by the runtime environment. Further on

there is no reason to serialize objects which are used as parameters for kernel methods, so the performance

of the entire system increases.

Another benefit of using objects as parameters is that the object respectively the data included in these

objects need not be copied. The kernel method obtains a reference and accesses the object directly. This

increases the system performance again.

3.3 Inter Address Space Pointers

In traditional systems there are at least two different address spaces, one for the kernel and at least one

for user applications. As the kernel methods are always needed on each node the straight-forward way of

implementing the system would be to place the kernel in the local address space. These local addresses are

not shared with other nodes, and each node in the cluster can use them in different ways. In this case a

separation between the kernel and user address space would mean to differentiate between the local- or

NonDSM- and the DSM-address-space. If in such an environment objects are used as parameters, some

references will point from the Non-DSM into the DSM address space. References which points from the

Non-DSM into the DSM reduces the performances of the cluster, as they inhibit the relocation of objects

so that avoidance of false-sharing and memory fragmentation is prevented. The reason being that the

7

backchain entries are not longer unambiguous when an object migrates to another node and is then

relocated from one DSM address to another. If an object is referenced by a Non-DSM-object, the

Backchain leads into the local memory of the node. As addresses in the local memory are not unique, the

pointer can not be adjusted, as it is not possible to detect which local memory area is specified by this

backchain entry. The correct reference to this object can not be found and an adjustment of the memory

location which is specified by the backchain will lead to invalid pointers or even destroyed code segments

(see figure 2).

As long as DSM-objects are relocatable, references from the Non-DSM into the DSM address

space are not possible, as they could lead to dangling pointers or destroyed code segments. To

solve this problem it would be possible to prevent relocation of DSM-Objects, which are

referenced by Non-DSM-object. As it is not possible to specify, which objects are used as

parameters for kernel methods, nearly all objects in the DSM could not be relocated and so the

performance of the cluster will be impaired because false sharing and fragmentation of the

memory can not be handled. Therefore direct pointers from the Non-DSM into the DSM-address-

space must be avoided.

Another interesting question is how kernel methods can be called from DSM applications. Two

alternative methods are conceivable:

8

Figure 2 Migration and subsequently relocation of a DSM-object

DSM

local
memory

local
memory

DSM

local
memory

local
memory

DSM

local
memory

local
memory

DSM-Object referenced by
a Non-DSM-object

DSM-object migrated to
another node

DSM-object was relocated to
another address

node 1 node 1 node 1node 2 node 2 node 2

pointer backchain

1. Software Interrupt: Like in most traditional systems, kernel methods may be called using kernel- or

system-calls. These are software interrupts which request a specific function from the kernel. If kernel-

calls are used to communicate between the DSM applications and the operating system there are no

“address space spanning” pointers but the question arises how to pass parameters from the DSM to the

kernel, as the software interrupt itself cannot accept parameters. One possible solution is to pass data to

the kernel through a fixed address. If an object is used as a parameter, this address would contain the

pointer to the object which should be used. As each kernel method requires different parameters, this

object must be of a generic type and thereby each object can be passed. Each kernel method has to

check the given object if it is type compatible with the expected one as this could not be handled by the

runtime environment. This rises the complexity for system programmers and makes the system

vulnerable to faults by simultaneously reducing the performance and the possibilities of parameter

passing.

2. Object oriented invocation: Kernel methods are invoked in an object oriented fashion via direct

pointers to the requested kernel class. This implies that all kernel classes and their methods have to

reside at the same addresses on each node in the cluster. This is necessary as each application can only

have one pointer to a kernel class. Should they reside at different addresses, these references would

point to invalid addresses and the corresponding kernel methods could not be called correctly on some

nodes (see figure 3). If direct pointers are used each node in the cluster must run the same kernel, and

such a kernel can never be changed during runtime. Consequently all pointers in the applications,

which reference kernel methods require adjustment. To achieve this, all kernel methods must contain a

backchain which points from Non-DSM into the DSM and thereby the above described problems will

occur.

9

Figure 3 Invalid reference to kernel methods

DSM

local
memory

local
memory

DSM

local
memory

local
memory

node 1 node 1node 2 node 2

Both techniques give rise to an additional problem. The compiler is running in the DSM and

any new program is automatically created in the DSM. If the new program is a device driver

(which typically resides in kernel space) the code segments must be transfered from the DSM

into the Non-DSM address space and this must occur simultaneously on each node.

Our implemented solution which solves all the challenges above is to remove the kernel from the local

memory address space and move it into the DSM. Further benefits of this approach are described in the

following section.

4 Extending the Single System Image Concept

We elaborate the SSI concept by moving the OS and the Kernel into the DSM. The local memory is

only used for a few state variables for the network device drivers and -protocol and for the so called

Smart-Buffers, which help to bridge the gap between not restartable interrupts and transactions

[Bindhammer].

4.1 Benefits of a kernel running in the DSM

If the kernel runs in the DSM parameter passing between applications and kernel is elegant and all

objects can be used as parameters. Kernel methods are called directly as described in section 3.3. There

are no references pointing from one address space to the other. Since all device drivers now reside in the

DSM even the problem of transferring newly compiled drivers from the DSM into the kernel space

vanishes. Because the code segments of the kernel methods are in the DSM redundancy is avoided.

Further benefits from this concept, especially for system checkpointing are described in Section 5.

Some interesting questions surfaced when moving the kernel into the DSM, but before we describe

these topics and our corresponding solutions we describe the memory management of Plurix and the

allocation mechanism for new objects as this is important for our solution.

10

4.2 Distributed Heap Management

A basic design topic of the Plurix system is the page-based DSM, raising the false sharing problem. The

allocation strategy of the memory management must try to avoid false sharing wherever possible.

Furthermore collisions during the allocation of objects in the DHS must be avoided, as such a collision

will abort other transactions and thereby serialize all allocations in the cluster. To achieve those goals,

Plurix uses a two stage allocation concept consisting of allocator-objects and a central memory manager.

The latter is needed, as the memory has to be portioned to the different nodes in the cluster. This division

must not be static, as this would reduce the maximum size of the objects.

The memory manager is used to create allocators and large objects. As the allocator must have at least

the same size as the new object which should be created, the usage of allocators for large objects would

lead to large allocators and thereby to a static fragmentation of the heap. The alternative for this is to limit

the size of the allocators and thereby the maximum size of the DHS-objects which is unacceptable.

Allocator-objects represent a portion of empty memory. The size of an allocator is reduced for each

allocated object. If it is exhausted, the Allocator is discarded and a new one is requested from the central

memory manager.

4.2.1 Allocation of Objects

If a new object is requested, the memory management first decides if the object is created by the

corresponding allocator or by the memory manager. This decision depends on the size of the object. Each

object which is greater than 4KB is directly allocated by the memory manager. To avoid false sharing on

these objects, their size is increased to a multiple of 4 KB (page granularity of the 32-bit Intel

architecture). As all objects which are allocated by the memory manager have a size of a multiple of 4 KB,

each object starts at a page border and consumes N pages. Therefore these objects do not co- reside with

other objects on the same page.

Objects which are less than 4 KB are created by an allocator. As each node has its own allocator,

collisions can only occur if a large object is allocated or if an allocator is exhausted and a new one must be

created. The measurements in section 6 show, that the size of most of the objects in Plurix are less than

11

4KB, so large objects are rarely allocated. The collisions which occur during these allocations are

tolerable most of the time.

The benefit of the two level allocation of objects is that small objects from one node are clustered in the

memory. As a consequence collisions do not occur during the allocation of small objects and are rare if

large objects are allocated. As large objects are not allocated within the allocator, its size can be limited,

without limiting the maximum size of the objects. No static division of the memory is needed and

therefore no static fragmentation is created.

4.2.2 Reduction of False Sharing

Generally speaking objects can be divided into two categories: Read-Only (RO) and Read-Write (RW)

objects. False-sharing on RW-objects is reduced by the mechanism described above. To further reduce

false-sharing it is reasonable to make sure, that RO-objects like code segments and class descriptors

without static variables do not co-reside with RW-objects on the same page, as this would lead to

unnecessary invalidations of the RO-objects due to false-sharing. Code segments are only written during

compilation by the compiler. If these objects would be indiscriminantly allocated, they could reside on the

same pages as the RW-objects of the node which is currently running the compiler. To avoid this, Plurix

provides additional allocators for RO-objects.

12

Figure 4 Allocation of objects

512 MB

4 GB
Allocator Node1

Allocator Node2

Memory manager
object

Node1

size < 4kB

size >= 4kB

Node2

siz
e >

= 4kB

size < 4kB

4.3 Protection of SysObjects

If the entire system is running in the DSM, some code segments and instances of classes must be

protected against invalidation, as these objects are vital for the system. The objects which must always be

present on a node are called SysObjects. These are nota bene all classes and instances concerning the

Page-Fault-handler, the DSM protocol and the network device drivers. As these objects reside in the DSM

they might be affected by the transaction mechanism and in case of a collision on such a page, the page

would be discarded and the system will hang, as the node is no longer able to request missing pages.

The protection of SysObjects against invalidation is easy to achieve just by defining two additional

allocators. SysObjects are either code segments or instances of SysClasses. As described above, code

segments are only written during compilation otherwise they are read only. Additionally, code segments

should not co-reside on the same pages as RW-objects as this would lead to false-sharing and therefore a

special allocator is used. The compiler will create the new kernel classes in a different memory area.

Afterward update messages need to be sent to all nodes in the cluster, to replace old classes and instances

by new ones. To achieve this, it is sufficient to make sure that such an allocator is only used by the current

compilation and after that the remaining part of the last used page is consumed by a Dummy-SysObject.

RW-SysObjects are instances of SysClasses which are meaningless for all nodes except that one, that

has created the instance. For this reason RW-SysObjects are not published through the global name

service. Therefore no other nodes can access a RW-SysObject. The only case where a RW-SysObject

could be invalidated is as a result of false-sharing. To prevent this, each node acquires a SysRW-Allocator

during the boot phase. All instances of SysClasses are allocated in this private allocator, so that there are

only SysObjects from one node on the same page.

These two additional allocators and the described techniques to use them are sufficient to protect all

SysObjects against invalidation at run time.

13

4.4 Local memory for State Variables

State variables of the DSM protocol and the network device drivers must outlast the abort mechanism,

as these variables are needed to handle the abort mechanism. If they would be reset the current state of the

protocol and the network adapter would be lost. The network device driver would never be able to receive

the next packet as the receive-buffer pointer would also be reset. Also the protocol contains a sequence

number for the messages to make sure, that no vitally important message is lost. If the state variables are

reset, the protocol will receive messages from the future. In this case it would not be possible to decide if

this number is invalid due to an abort or if the node has missed important network packets.

As the protocol is not a device driver, its current state variables can not be read from the hardware

registers, as it is possible for normal (not network) device drivers. Hence these variables must be stored

outside the DSM address space. For device drivers and the protocol, the kernel provides special memory

areas in the local memory in which state variables are stored. To access these areas, Plurix provides

“structs“, allowing to address raw memory much like the variables in an object. “structs“ are also used to

access the memory mapped registers of devices. As Structs may not contain pointers and are not

referenced by pointers no problems with address space spanning pointers arise.

4.5 Restart of device drivers

In case of an abort the state of the entire node is reset to the state just before the current transaction was

started. Devices can not be automatically reset and the device driver programmer must implement an

Undo-method, which is called by the system in case of an abort. This method has to ensure that both the

state of the hardware and that of the state variables in the device driver object are reset. To make this

possible the state of all devices before the transaction must be conserved.

An example for such an Undo-method is shown for graphics controller devices. In this case the current

On- and Off-screen memory-area on the display adapter must be reset. Since between two transactions the

On-and Off-screen contains the same data, it is sufficient to reset the Off-screen memory and afterward

copy this value to the On-screen area. This is easy to implement as most graphics controllers contain

substantial amounts of memory for textures and vertices. A small part of this memory can be used to save

14

the committed state of the graphic controller. After the commit phase, the current On-Screen area is copied

into this separate memory area and can be restored if necessary.

The serial-line controller is more difficult to handle. This controller sends all data if it receive it from

the system. In case of an abort it is not possible to “undo” the sent data. For this problem there are two

possible solutions. Either the affected application is able to handle duplicated data or the driver has to use

smartbuffers. Data in this special buffer type are invisible to the device until the commit phase, so the

device can only access committed and therewith value data.

5 Checkpointing and Recovery

State of the art PC-Clusters are built using Linux or Microsoft Windows but implementing

checkpointing and recovery in these operating systems is difficult because it is not sufficient to save the

process context but also the local kernel context needs to be observed. The latter includes internal data

structures, open files, used sockets, pending page requests, ... which can be read only at kernel level.

Resetting the kernel and process context in case of a rollback is also challenging because of the complex

OS architectures. As a consequence taking a checkpoint is time consuming and checkpointing intervals are

quite large, e.g. 15-120 min. for the IBM LoadLeveler.

By extending the Single System Image concept we avoid these drawbacks. Storing the kernel and its

contexts in the DSM makes it easy to save this data. Rollback in case of an error is no problem in Plurix

because the OS and all applications are designed to be restartable anyway.

5.1 Current Implementation

A central fault-tolerant PageServer stores consistent heap images in an incremental fashion on disk.

Between two checkpoints the PageServer uses a bus snooping protocol to intercept transmitted and

invalidated memory pages to reduce the amount of data to be retrieved from the cluster at the next

checkpoint. If a checkpoint must be saved the cluster is stopped and the PageServer collects invalidated

pages that have not been transmitted since the last checkpoint. All memory pages are written to disk

15

synchronously. We have implemented a highly optimized disk driver that is able to write about 45 MB/s.

An early performance evaluation of our PageServer can be found in section 6.

Because the kernel and its context reside in the DSM we must not save node local data. Furthermore,

we have no long running processes or threads with preemptive multitasking that need to be checkpointed.

Currently, we use a cooperative multitasking scheme for executing short transactions. A transaction is

executed by a command or periodically called from the scheduler. Long running computations have to

divided in sub transactions manually. In case of an error the node can perform a reboot and fetch required

memory pages again from the DSM from the last checkpoint.

5.2 Fault-Tolerance

We support clusters running within a single Fast Ethernet LAN and assume a fail-stop behavior of

nodes. Most DSM systems typically use a reliable multicast or broadcast facility to avoid inconsistencies

caused by lost network packets. Because of the low error probability of a LAN we are not willing to

impose the overhead by a reliable communication during normal operation. Instead we rely on a fast error

detection, fast recovery, and the quick boot option of our cluster OS.

As described in 2.3 our DSM implements transactional consistency and committing transactions are

serialized using a token. We introduce a logical global time (a 64-Bit value) incremented each time a

transaction commits. In the latter case the new time is broadcasted to the cluster and each node updates its

time variable. A node can immediately detect if it missed a commit and ask for recovery. If the commit

message cannot be sent with one Ethernet frame, the commit number is incremented for each commit

packet. Thus we avoid inconsistencies if a node did miss a packet of a multiple packet commit.

Furthermore, any page or token requests always includes the global time value of the requesting node. If

such a request contains an out-of-date commit number it is not processed but recovery is started. Thus a

node that missed a commit is note able to commit a transaction because it is not granted the token.

If a single node fails temporarily it can reboot and join the DSM again. If the PageServer detects

missing pages during the next checkpoint that were lost because of the a node failure the cluster is reset to

16

the last checkpoint. If a multiple nodes fail temporarily or permanently the same error detection scheme

works, too.

The network might be partitioned temporarily into two or more segments. Only one token and one

PageServer is available in any of these segments. Nodes within the segments send page and token

requests. If either request cannot be satisfied the segment tries to recover by contacting the PageServer.

Only the segment with the PageServer can recover the others have to wait until the PageServer becomes

available again.

We plan to implement a distributed version of our PageServer two avoid a bottleneck and to replicate

data stored on the PageServers to tolerate failures of PageServers, too. We also plan to introduce a

asynchronous checkpointing scheme to avoid stopping the cluster during checkpointing operation.

Dependency tracking will also be investigated to restart only affected nodes in case of a failure.

6 Measurements

The performance evaluation is carried out on three PCs interconnected by a Fast Ethernet Hub. Each

node is equipped with a RLT8139 network card and an ATI Radeon graphic adapter. Only the first

machine (with Celeron-CPU) is featured with a hard disk (IBM 120GB, max disk write throughput

without network 45 MB/s) and acts as PageServer.

Table 1. Node configuration

Node CPU RAM
1 Celeron 1.8 GHz 256 MB DDR RAM at 266 MHz
2 Athlon XP2.2+ at 1.8 GHz 256 MB DDR RAM at 333 MHz
3 Athlon XP2.0+ at 1.66 GHz 256 MB DDR RAM at 333 MHz

6.1 General System Measurements

We have tested the startup time of the above described cluster nodes. The results are split into the time

which the kernel needs and the time which is needed to detect and start the hardware such as HD, mouse

and keyboard. The nodes have been started with and without harddisc and the time difference is about 540

ms during which we have to wait for the harddisc to answer.

17

Table 2. Startup times (in ms)

Node Startup as Master Kernel time Startup as Slave Kernel time

1 791 254 240 234

2 780 248 238 233

3 792 254 239 234

The kernel allocates 2787 objects if running as master and 518 objects if running as slave. It takes

approximately 3 microseconds to allocate an object and additional 0.5 microseconds to assign a

pointer to an object. To get the kernel from the DHS a slave node must request 284.

To show the correlation of changed heap size, heap spreading and time to save a checkpoint, ten

measurements were made. Comparison of several measurements is needed for predications about speed of

hard disk, performance of implemented software and latency caused by network. In the following table for

each measurement the configuration (single station or cluster) and heap spreading is given. The

PageServer creates consistent images of the complete heap containing both user data (node1 – node3) and

operating system. The latter is contained in “saved data”.

Table 2. Measurements

nodes Node 1 Node 2 Node 3 Saved data Time to

save to disc

Throughput

(resulting disc

write bandwidth)
1 1 20 MB - - 21,4 MB 1639 ms 13,7 MB/s
2 1 40 MB - - 42,5 MB 2491 ms 17,5 MB/s
3 1 60 MB - - 63,0 MB 3371 ms 19,1 MB/s
4 1 80 MB - - 83,4 MB 4321 ms 19,7 MB/s
5 1, 2, 3 60 MB 0 MB 0 MB 63,1 MB 3422 ms 18,9 MB/s
6 1, 2, 3 20 MB 20 MB 20 MB 63,1 MB 4476 ms 14,4 MB/s
7 1, 2, 3 0 MB 28 MB 32 MB 63,1 MB 4971 ms 13,0 MB/s
8 1, 2, 3 40 MB 40 MB 40 MB 124,6 MB 8049 ms 15,8 MB/s
9 1, 2, 3 48 MB 48 MB 48 MB 149,1 MB 9540 ms 16,0 MB/s
10 1, 2, 3 60 MB 60 MB 60 MB 186,0 MB 11707 ms 16,3 MB/s

In comparison of measurement 1-4 we see an increase of throughput in consequence of

increased data size. Measurements 3, 5-7 have same size of saved data, so decreased throughput

depends on network latency. Comparing measurements 6, 8-10 approves nearly constant

18

throughput. The slight improvement for increased data size is due to faster saving of local data.

The following chart shows these three comparisons:

7 Experiences and Future Work

Moving the kernel into the DHS and therewith elaborating the SSI concept made it possible to create a

type-safe kernel interface and to solve the problem of address space spanning pointers. Additionally,

checkpointing is made much easier and the question in which way kernel methods should be called is

answered.

The current version of Plurix is running stable in the cluster environment, without collisions during

allocation. The usage of the allocator strategy inhibits false sharing if no applications which share objects

are running. As soon as objects are created by an application and shared with other nodes, the allocation

mechanism is not able to prevent false sharing but we are working on a monitoring tool to detect false

sharing. Relocation of objects to dissolve false sharing is currently available.

Plurix uses a distributed garbage collection algorithm which is able to detect and collect garbage

(including cyclic garbage) without stopping the cluster. The detection algorithm for cyclic garbage works

error free but currently there is no information which object could be cyclic garbage so each object in the

DHS must be checked.

The consistency of the DHS is ensured by the PageServer, which uses linear segment technique to save

all changed pages. This includes data and code objects of user applications as much as the OS. In the

current implementation the speed of saving the complete heap is limited by network throughput and not by

OS or hard disc. For this reason it is necessary to save the state of the cluster continuously which could be

achieved by some minor changes, regarding the mechanism of detecting missing pages.

19

8 References

[Mosix] Barak A. and La'adan O., The MOSIX Multicomputer Operating System for High Performance Cluster Computing ,

Journal of Future Generation Computer Systems, Vol. 13, No. 4-5, pp. 361-372, March 1998.

[Wirth] N. Wirt and J. Gutknecht, „Project Oberon“, Addison-Wesley, 1992.

[Traub] S. Traub, “Speicherverwaltung und Kollisionsbehandlung in transaktionsbasierten verteilten Betriebssystemen”, PhD

thesis, University of Ulm, 1996.

[TreadMarks] Amza C., Cox A.L., Drwarkadas S. and Keleher P., „TreadMarks: Shared Memory Computing on Networks of

Workstations“, Proceedings of the Winter 94 Usenix Conference, pp. 115-131, January 1994.

[Fuchs90] Kun-Lung Wu and W. Kent Fuchs, „Recoverable Distributed Shared Virtual Memory”, IEEE Transactions on

Computers, 39(4):460-469, April 1990.

[Morin97] C. Morin, I. Puaut, “A Survey of Recoverable Distributed Shared Virtual Memory Systems”, IEEE Transactions on

Parallel and Distributed Systems, Vol. 8, No. 9, September 1997.

[Keedy] J.L. Keedy, and D. A. Abramson, “Implementing a large virtual memory in a Distributed Computing System”, in: Proc.

of the 18th Annual Hawaii International Conference on System Sciences, 1985.

[Li] K. Li, “IVY: A Shared Virtual Memory System for Parallel Computing”, In Proceedings of the International Conference on

Parallel Processing, 1988.

[Wende02] M. Wende, M. Schoettner, R. Goeckelmann, T. Bindhammer, P. Schulthess, “Optimistic Synchronization and

Transactional Consistency”, in: Proceedings of the 4th International Workshop on Software Distributed Shared Memory,

Berlin, Germany, 2002

[Bindhammer] T. Bindhammer, R. Göckelmann, O. Marquardt, M. Schöttner, M. Wende, and P. Schulthess, “Device

Programming in a Transactional DSM Operating System”, in: Proceedings of the Asia-Pacific Computer Systems Architecture

Conference, Melbourne, Australia, 2002.

[Simle] http://os.inf.tu-dresden.de/SMiLE/

20

