
www.dxram.io

DXRAM:
A Distributed In-Memory
Key-Value Storage
Optimized for Small Data Objects

Department of Computer Science
Heinrich-Heine-University Düsseldorf, Germany

Last update: June 06, 2019

www.dxram.io

Contributors

Contributors 2

§ Dr. Florian Klein (2011 - 2015): Initial implementation of DXRAM: Metadata
management and overlay, local memory management, Ethernet network
subsystem

§ Kevin Beineke (2013 - 2018): Logging and Recovery, DXNet and Ethernet
transport

§ Stefan Nothaas (2015 - 2019): Initial implementation of DXGraph, DXMem,
DXNet, Infiniband transport, IBDXNet

§ Philipp Rehs (2016 - *): DXGraph and applications
§ Filip Krakowski (2018 - *): Migration, Dynamic up- and downscaling
§ Fabian Ruhland (2018 - *): Graph based applications, IBDXNet (RDMA)
§ Michael Schoettner: Chairholder and supervisor of DXRAM project

www.dxram.io

Introduction

3

§ Data Growth
§ HPC, Big Data and Graph Application Domains
§ Application Requirements
§ Challenges & Approach

www.dxram.ioIntroduction 4

Need answers quickly and on bigger data

www.dxram.ioIntroduction 5

Computing power is growing ~50% each year

D
r.

M
cC

al
pi

n,
 U

ni
ve

rs
ity

 o
fT

ex
as

, A
us

tin

www.dxram.io

High performance computing (HPC)

Introduction 6

§ Focusing on computing resources
§ Aggregating many cores

§ OpenMP: multithreading on each node
§ Cuda: parallel computations on GPU
§ MPI: exchanging data explicitly between nodes

www.dxram.io

Big data systems

Introduction 7

§ Designed to process huge amounts of data
§ Aggregating many storage nodes

§ Hadoop MapReduce:
• Batch processing of big files (tera bytes)
• Coordinate many parallel tasks executed on each node
• Only for embarrassingly parallel applications

§ Apache Spark:
• Keep data in memory avoiding to write and read intermediate files to/from disk
• Resilient Distributed Data Sets: immutable; can be recomputed in case of failures

www.dxram.ioIntroduction 8

Graph Applications

§ Interactive graph applications, e.g. social networks
§ Online graph analytics, e.g. bioinformatics, WWW
§ Online state management, e.g. for Stateless NFV

Social NetworksBioinformatics

Network Function Virtualization (NVF)

WWW

www.dxram.io

Interactive Applications: Social Networks

Introduction 9

UserID
Username
First Name
Last Name
Gender
E-Mail
Address
…
100 – 1000 bytes

Profile

Profile

Profile
Profile

UserID4:ObjectID
UserID7:ObjectID
…
~16 bytes each

Facebook: Five profiles are created every second (2012)
2.01 billion users active in June 2017

Friendship

§ Interactive requests from billions of users from the Internet to backend storage
§ Irregular access patterns

www.dxram.io

Interactive Queries: Social Networks

Introduction 10

Profile
RsrcID3:ObjectID
RsrcID1:ObjectID
…
~16 bytes each

Resource

Resource

Resource

Resource
Resource types:
- Comments (< 100 bytes)
- Status updates (< 100

bytes)
- Likes (~16 bytes)
- Shares (~16 bytes)
- Friend requests (~16 bytes)
- Thumbnails (~100 bytes)
- …

Facebook: ~50,000 Likes, ~4,900 status updates and
~55,000 shares generated every second (2012)

70% of all data objects are smaller than 64 byte (2011)

www.dxram.io

Online Graph Analytics: Bioinformatics

Introduction 11

§ Enumerating common molecular substructures
• 156.000 smaller molecular graphs
• Identify maximal cliques in product graph
• Many graph comparisons (up to 156.0002)

§ Many small data objects (32 – 64 bytes)
§ Requiring computations on storage nodes

https://www.cs.hhu.de/lehrstuehle-und-arbeitsgruppen/algorithmische-bioinformatik/publikationen.html

www.dxram.io

Online State Management: Stateless EPC

Introduction 12

Z. Qasi et.al.: A High Performance Packet Core for Next Generation Cellular Networks (SigComm 2017)

§ Use case for Network Function Virtualization (NVF)
§ Evolved Packet Code (EPC) state management

for mobile users in shared store

§ Low-latency data access to many
small data objects is important

§ Also requires a subscription
and notification mechanism
• E.g. if control thread changes

user control state the store
needs to send a notification
to a remote data thread

www.dxram.io

Summary of Graph Application Requirements

Introduction 13

§ Low-latency data access is very important

§ Efficient management of billions to trillions of small data objects
• Reads dominate (writes and deletes are seldom)
• Data objects are small (32 – 64 byte per object)
• Often irregular access patterns
• High concurrency

§ Some applications need to run computations on storage nodes (locality awareness)
• Vertex-centric programming model (coordinated by super steps)
• Graph-centric model requiring fine-grained synchronization

www.dxram.ioIntroduction 14

But I/O is the new bottleneck

§ Low-latency is a must for interactive applications

https://www.extremetech.com/extreme/211087-intel-micron-reveal-xpoint-a-new-memory-architecture-that-claims-to-outclass-both-ddr4-and-nand

https://www.extremetech.com/extreme/211087-intel-micron-reveal-xpoint-a-new-memory-architecture-that-claims-to-outclass-both-ddr4-and-nand

Memory technology Access Latency Max. Throughput

Read Write Read Write

Hard disk 9ms 9ms 112 MB/s 45 MB/s

NAND flash 47us 15us 3.0 GB/s 2.6 GB/s

DRAM 51ns 51ns 13 GB/s 13 GB/s

SRAM 1-2ns 1-2ns >100 GB/s >100 GB/s

www.dxram.io

Distributed approach is a good choice

Introduction 15

§ Limitations of a single machine
• RAM is still less than traditional (slow) storage
• Number of cores limited
• Increasing costs with such “fat” nodes

§ A (highly) distributed solution is better than one (or a few) “fat” nodes
§ FLOPS are increasing each year because of

the growing number of cores on each socket
§ But memory latency of servers is getting slightly worse each year

• The reason is the bus bottleneck shared by all cores
• And cache snooping between all cores

www.dxram.ioIntroduction 16

DXRAM in Storage Systems

The Case for RAMClouds: Scalable High-Performance Storage Entirely in DRAM, Osterhout et.al.

www.dxram.ioIntroduction 17

Caching is not sufficient

§ High cache hit rates needed because of the large access time gap between DRAM and disk
• Even a 1% miss ratio for a DRAM cache costs a factor of 10x in performance

§ Graph applications have irregular access patterns → caches need to be very large
• Facebook keeps around 75% of all data always in caches
• Used up to 1.000 Memcached servers for caching

§ Caches need to be manually synchronized with backend storage to avoid data loss in case
of server crashes or power outages

www.dxram.io

DXRAM - Distributed in-memory
key-value store

18

§ Challenges & Objectives

www.dxram.io

DXRAM: As a fast backend key-value store

DXRAM – Distributed in-memory key-value store 19

Web
App

Master
Backup

SSD

Master
Backup

SSD

...

10 – 1,000
DXRAM servers

User icons
https://icons8.com/

Master
Backup

SSD

Web
App

Web
App

...

Internet
5 – 200ms latency

Application
nodes

Data
Center

Network
5-10µs

www.dxram.ioDXRAM – Distributed in-memory key-value store 20

All data always in memory

§ Aggregate tens to thousands of servers in a cloud data center as needed

§ High-speed networks (10 – 100 Gbit/s) allow fast access to all data

§ Data is not replicated in remote memory
• Data volume would be multiplied → DRAM is expensive
• Move computations not data → functions are much smaller than data volumes
• Avoid consistency issues

• Weak consistency scales but is complex
• Strong consistency is great but does not scale

• Does not help for fault tolerance in case of power outages

www.dxram.ioDXRAM – Distributed in-memory key-value store 21

Fault tolerance

§ Crash-recovery model
• Single or several servers crash (likely)
• Data center power outage (very seldom)
• Network may be partitioned (very seldom)

§ Data is replicated on remote SSDs
• Remote replication allows immediately recovery
• Persistence in case of data center power outage

§ Fast parallel server recovery (1 - 2 sec.)
• Minimizing impact for applications
• While avoiding overhead of in-memory replication

www.dxram.io

Interactive compute platform

DXRAM – Distributed in-memory key-value store 22

§ Complement fast storage (DXRAM) with
computations on storage nodes (DXGraph)
• Distributed and parallel computations
• Move tasks not data

§ Example: enumerating common
molecular substructures
• Identify maximal cliques
• Many parallel comparisons

of many small graphs

100 – 1,000 Servers

Data Center

Master
Backup

SSD

Task
Master
Backup

SSD

Task
...Master

Backup
SSD

Task
Master
Backup

SSD

Task

www.dxram.ioDXRAM – Distributed in-memory key-value store 23

Computation framework

§ Data models based on key-value tuples
• Graph data model: vertices and edges are stored as data objects
• Tables/Sets: stored as tablets/subsets

§ Distributed task management: move tasks not data

§ Application-controlled synchronization
• Barriers
• Event notifications

§ Hot-spot migration: for load balancing

§ Dynamic up- and down-scaling of compute resources (nodes)

www.dxram.io

Summary - Challenges & Objectives

§ Global and local lookup for billions of small objects (32 – 64 bytes)
• Metadata explosion: Storing the object location of every single object is very expensive
• A single lookup server is hazardous -> distribution

§ Distributed management for billions of small objects
• Low remote latency (~10 us): High speed network
• Low local latency (~1 us): Low latency storage -> RAM
• A low overhead: 5 – 10% metadata overhead in RAM
• High concurrency (100’s of threads): Minimize locking/lock free -> Millions of ops

§ Dynamic up- and down scaling: Data is evolving and expanding, thus the cluster must scale
as well (1000’s of servers)

§ Reliability: Persistency (→ power outage) and fast recovery -> single failed server < 2 sec
§ Dynamic data migration and load balancing -> some profiles/resources are very popular

(zipfian distribution).

DXRAM – Distributed in-memory key-value store 24

www.dxram.io

DXRAM - Core Architecture

25

§ Architecture
§ Node Types & Overlay
§ Metadata Management
§ Memory Management: CID Translation & Small Object Heap

www.dxram.io

DXRAM – Key Facts

DXRAM: Core Architecture 26

§ Distributed system for clusters in data centers.
§ All data always in RAM.
§ Key-value data tuples: “chunks“

• Key: 64 bit globally unique sequential chunk ID (CID)
§ Optimized for handling billions of small chunks.
§ High throughput and low latency networks: 10 Gbit/s Ethernet and 56 Gbit/s Infiniband
§ Persistency through logging to raw device (SSD aware).
§ Parallel distributed fast recovery.
§ Dynamic up- and downscaling of cluster.
§ Data migration to handle hot-spots.
§ Written in Java.
§ Open source at Github.

www.dxram.io

Architecture

DXRAM: Core Architecture 27

§ Modular software stack
§ Engine: Management tasks for modules
§ Core functionality implemented as components

and/or services
§ Services form API for applications
§ Applications implemented as DXApp (loadable jar

package)

Engine

Bootstrapping

Configuration

Component	Manager

Service	Manager

Components

Boot

MemoryName Network

Lockup

Backup

Logging Failure

Application

Services

Chunk

Name NetworkMigration

Synchronization Recovery

Stats

www.dxram.io

Components

Boot

MemoryName Network

Lockup

Backup

Logging Failure

Components

DXRAM: Core Architecture 28

§ Implement node local functionality/features
• Access to hardware (native memory, disk,

network)
• State store and management
• Caches

§ Components can access other components for
data exchange
• Access to own node ID from boot

component
§ Modularization: Split into multiple components
§ Can be enabled/disabled if not needed → save

resources
§ Can be limited to node type: superpeer/peer

www.dxram.io

Components

DXRAM: Core Architecture 29

§ Application: DXApp package management for applications running on DXRAM nodes
§ Backup: Management of backup ranges and backup tree
§ Boot: Node bootstrapping, Node ID assignment, Node mappings
§ Chunk, Chunk Backup and Migration: Access to local DXMem backend storage

• CRUD operations for storing application chunks
• Special components for fast backup and migration

§ Event: Local event signaling and handling system
§ Failure: Node failure handling
§ Job: System running worker threads executing queued jobs
§ Log: Access to DXLog for logging (persistent data backup) with access to disk
§ Lookup: Overlay management and lookup cache tree
§ Name: Naming index structure
§ Network: Access to DXNet for sending and receiving messages

www.dxram.io

Services

Chunk

Name NetworkMigration

Synchronization Recovery

Stats

Services

DXRAM: Core Architecture 30

§ Implement (high level) API for applications
(DXApp)

§ Handle communication with same service on
remote node

§ Isolation: One service cannot access other
services → Avoid dependencies on API

§ Can be enabled/disabled if not needed → save
resources

§ Can be limited to node type: superpeer/peer
§ A component does not require a matching service

and vice versa

www.dxram.io

Services (API)

DXRAM: Core Architecture 31

§ Application: Running DXApp jar packages, one (main) thread per application
§ Boot: Expose own node ID, node ID mappings, superpeer/peer list, …
§ Chunk: Various services offering different types of operations

• CRUD operations for chunks
• “Anon” operations for chunks without knowing the type (byte[] data used)
• Debug for memory debugging
• Chunk pinning and direct memory access

§ Job: Enqueue new jobs either locally or to remote nodes running the job service
§ Log: Access local and remote log (writing backup data to disc) information
§ Logger: Access the local or a remote (text) logger (e.g. set log level)
§ Lookup: Access to the (remote) superpeer overlay, lookup tree, metadata, …
§ Migration: Migrate chunk(s) from one peer to another one

www.dxram.io

Services (API)

DXRAM: Core Architecture 32

§ Master Slave Compute: Task based computations running on peer nodes
§ Network: Send and receive messages
§ Recovery: Handling of remote recovery messages
§ Statistics: Access to statistics collected in various components and services
§ Synchronization: Barrier synchronization for computations on peers
§ Temporary Storage: Small and chunk-store independent scratch pad (no persistency)

www.dxram.io

Application

Application

DXRAM: Core Architecture 33

§ Implement application interface → main-Method
§ Access to API (Services)
§ Compiled as separate jar-Package
§ Loaded by DXRAM (Application Service) on boot
§ Run multiple and different applications on peers
§ DXRAM applications

• Benchmarks
• REST-API (server)
• Terminal (server): For CLI to access services
• DXGraph: Graph framework

www.dxram.io

Node Types - Superpeers

DXRAM: Core Architecture 34

§ Store global meta-data:
• the locations of chunks
• nameservice entries
• monitoring data
• node states
• backup distribution

§ Coordinate recovery.

§ Form Chord-like overlay ⇒ O(1) node lookup
§ Meta-data replicated on successors.
§ 5 to 10% of all servers are superpeers.

www.dxram.io

Node Types - Peers

DXRAM: Core Architecture 35

§ Every peer is assigned to one superpeer.
§ Roles:

• Storage server: store data (chunks).
• Backup server: store backup data of other

peers (optional to all storage servers).

§ May run computations and exchange data
directly with other peers.

§ Serve client requests when DXRAM is used as a
back-end storage.

www.dxram.io

Global CID Lookup on Superpeers

DXRAM: Core Architecture 36

§ Lookup-Tree is stored on superpeers.
§ Based on modified B-tree.
§ Stores key-key-value tuples: beginning of range, end of range and location.
§ Lookup in O(log n).
§ CID aggregation ⇒ Low memory consumption for many chunks.

www.dxram.io

DXMem - Local Memory Management

37

§ Chunks
§ Memory Management
§ Custom allocator
§ Chunk Lookup

www.dxram.io

Objectives and Challenges

DXMem – Local Memory Management 38

§ Highly interactive applications => low-latency data access
• Data kept in-memory: HDD/SSD slow
• High concurrency is the rule
• Irregular access patterns
• Reads dominate (writes and deletes are seldom)

• But: Data races on concurrent updates
§ Vast data volumes (billions/trillions of objects)

• Data objects are small (16 – 128 byte per object)
• Main memory is limited (64/128 GB per server) compared to HDD/SSD
• Efficient memory management

• Every byte counts: one billion objects, one byte per object wasted => ~0.93 GB
• Keep high data locality => lowers latency
• Data distribution to multiple servers required (e.g. replication, immense volumes)

www.dxram.io

DXMem

DXMem – Local Memory Management 39

§ Local memory management in Java
§ All data stored in RAM
§ Key-value data model
§ Operations: Create, get, put, remove

§ Optimized for storing small objects (16-128 bytes),
outside of the Java heap

§ Fast O(1) lookup table to translate keys to memory
address, memory efficient

§ Consistency: Per chunk read-write lock for fine
grained concurrency control

§ Concurrent memory defragmentation (optional)
§ Pinning for direct memory access and RDMA

www.dxram.io

Chunks

DXMem – Local Memory Management 40

§ Chunk
• 64-bit key (”chunkID”), binary data as value, key + value = “chunk”
• Describes abstract concept: no type reflection on object
• “Everything stored in-memory is a chunk”

§ (Abstract) Chunk
• Interface for implementing custom data types/structures in DXRAM
• Serialization: Transparent for storing in-memory and network sending/receiving
• No reflection or type information required/stored (if required: user can add own

type information)
• Generic “chunk” (wrapper for binary array) already implemented

www.dxram.io

Allocator

DXMem – Local Memory Management 41

§ 43-bit pointers to address up to 8 TB of memory
§ Allocation by best-fit strategy
§ Custom serialization of Java objects to binary data

§ ”Marker byte” (MB): Block separator with metadata
§ Compacted length field stored with block
§ Free blocks managed as a doubly linked list

www.dxram.io

CIDTable

DXMem – Local Memory Management 42

§ No bare memory addresses: chunkID as key to access data
§ CIDTable: translate chunkID to memory

address similar to OS paging

§ Fast (5 direct memory lookups)
§ Tables created on demand
§ Compact and memory efficient (re-use

of chunkIDs)

www.dxram.io

Fine granular locking

DXMem – Local Memory Management 43

§ CIDTables
• 64-bit alignment
• Level 0 entry size: 8 bytes

§ Memory efficiency: Split length field (for small chunks)
§ Chunk pinning (e.g. for RDMA)
§ Read-write-lock (CAS)

• Fine granular: lock single chunk with data
• Coarse granular: use empty chunk as lock

www.dxram.io

Evaluation (1)

DXMem – Evaluation 44

§ Compared DXMem allocator to other well known allocators regarding memory overhead
• Java
• glibc
• hoard
• jemalloc
• tcmalloc
• boehmgc

www.dxram.io

Allocator Memory Overhead

DXMem – Evaluation 45

www.dxram.io

Evaluation (2)

DXMem – Evaluation 46

§ Compared DXMem and DXRAM (using DXMem) to
• Hazelcast with HD memory
• Infinispan

§ All systems store their data outside of the Java heap
§ Benchmarks

• Metadata overhead of local memory management
• Concurrent local access with YCSB workloads
• Distributed key-value store with YCSB workloads

§ YCSB Workloads
• YCSB-A: Objects with 10x 100 byte fields, 50% get 50% put
• Facebook-B: Objects with 1x 32 byte field, 95% get 5% put
• Facebook-D: Objects with 24x 32 byte fields, 95% get 5% put
• Facebook-F: Objects with 1x 64 byte fields, 100% get

www.dxram.io

Local metadata overhead

DXMem – Evaluation 47

www.dxram.io

Concurrent local access

DXMem – Evaluation 48

YCSB-A Facebook-B

www.dxram.io

Concurrent local access (2)

DXMem – Evaluation 49

Facebook-D Facebook-F

www.dxram.io

Distributed key-value store

DXMem – Evaluation 50

YCSB-A Facebook-B

www.dxram.io

Distributed key-value store (2)

DXMem – Evaluation 51

Facebook-D Facebook-F

www.dxram.io

DXNet: Network subsystem

52

§ Sending and receiving
§ Transports
§ Serialization: Importable/Exportable

www.dxram.io

Architecture

DXNet: Network subsystem 53

§ Network subsystem abstracts transport
layer

§ User can send messages and requests.
§ Low latency and high throughput.
§ Supporting: 10 Gbit/s Ethernet and 56

Gbit/s Infiniband.
§ Zero-Copy (not counting de-/serialization of

message objects).
§ Flexible and highly concurrent serialization.
§ Lock-free outgoing ring buffer supporting

concurrent serialization into native memory.
§ Event-driven message processing.
§ Pipelining to increase throughput.
§ Multi-level flow control.

www.dxram.io

Sending of messages

DXNet: Network subsystem 54

§ Optimized for many threads
sending in parallel.

§ Messages are aggregated in ORB
without impairing latency.

§ ORB lies in native memory
-> sending without copying

§ Message ordering is preserved.
§ Lock-free implementation with low

CPU load.

www.dxram.io

Receiving of messages

DXNet: Network subsystem 55

§ Event-driven.
§ Buffer Pool: contains buffers in

three different sizes to be filled with
incoming data.

§ Multithreaded deserialization:
• MCC imports message

headers in order.
• Handler threads create

message objects and import
payload in parallel.

www.dxram.io

Transports

§ >10 Gbit/s Ethernet:
• Based on Java NIO.
• DirectByteBuffers are mapped onto the ORB -> sending without copying to kernel

buffer.
• Two channels per connection to avoid connection duplication.
• Back channel is used for flow control messages.

§ >56 Gbit/s InfiniBand:
• Based on C++ library IBDXNet.
• ORB is allocated in native memory; access with JNI

DXNet: Network subsystem 56

www.dxram.io

Importable/Exportable Message Data

DXNet: Network subsystem 57

§ Interfaces for messages:
• Importable: How a message object is deserialized from an incoming byte stream.
• Exportable: How a message object is serialized to an outgoing byte stream.

§ Implemented by: Message, Request, Response
§ Objects within a message need to implement the interfaces as well.
§ User has control which data and how it is de-/serialized.
§ But: De-/serialization process transparent to the user.
§ Flexible and high performant serialization for network subsystem.

www.dxram.io

Evaluation

DXNet: Network subsystem 58

www.dxram.io

Evaluation

DXNet: Network subsystem 59

www.dxram.io

IBDXNet - InfiniBand Network subsystem
and DXNet transport for Java

60

§ InfiniBand in Java
§ Sending and receiving
§ Transports
§ Serialization: Importable/Exportable

www.dxram.io

InfiniBand in Java

InfiniBand in Java 61

§ Sockets programming vs. verbs
§ Multiple options available for Java

• IPoverIB
• libvma
• Java Sockets over RDMA (JSOR)
• jverbs (IBM JVM, only)
• JNI + libverbs

§ Many solutions are “redirecting” data from normal sockets to Infiniband
• Transparency
• Quick and easy to use
• Non optimal latency and throughput

§ Libraries
• FastMPJ with ibdev (MPI impl in Java)
• MVAPICH2

www.dxram.io

Evaluation – Sockets (uni-directional)

IBDXNet – InfiniBand network subsystem 62

www.dxram.io

Evaluation – Verbs (uni-directional)

IBDXNet – InfiniBand network subsystem 63

www.dxram.io

Evaluation – Sockets and Verbs (bi-direcitonal)

IBDXNet – InfiniBand network subsystem 64

www.dxram.io

IBDXNet - Infiniband Network Subsystem

§ Low latency and high throughput for Java applications as DXNet transport
§ Automatic connection and queue pair management
§ Asynchronous and highly optimized pipeline for sending and receiving
§ Ibdxnet: Custom C/C++ native subsystem using ib-verbs
§ DXNet IB transport: Java implementation of DXNet transport interface to connect to native

Ibdxnet using JNI
§ JNI layer to connect native IBDXNet with DXNet IB transport implementation: carefully

designed and optimized for low overhead

IBDXNet – InfiniBand network subsystem 65

www.dxram.io

Send path and pipeline

DXNet and InfiniBand: Architecture 66

www.dxram.io

Receive path and pipeline

DXNet and InfiniBand: Architecture 67

www.dxram.io

Sending and Receiving – Optimize usage of SGEs

IBDXNet – InfiniBand network subsystem 68

123HCA HCA

WC
SGE

1

2

3

4

5

6

7

8

12345

678

2

3

1
Front

Back

WRQ
SGE

1

ORB

Empty, back to Pool

Forward to Received callback

3 serialized
messages

Sending node Receiving node

www.dxram.io

Automatic connection management

IBDXNet – InfiniBand network subsystem 69

CR0Send
Thread

Recv
Thread H5

H = Handle

Job

Get connection to send
Data from node 3
(current) to remote 0

Get connection for
receiveddata from
remote 5

3

IB Queue Pair
3 5

Push job “Create
Connection to 0”
to Job QueueH0

Symbols:
NodeID

Connection table

0
1

H22

4

H5

QP
3

QP5

Case 1
Case 2

CR0

Global Connection Job Queue

CR0

Connection
Manager
Thread

CR0

CR(x): Create
DI: Discover
CL(x): Close

Job Dispatch

0

… …
… …

IB Queue Pair
0 3

IB Queue Pair

30

QP data exchange
node 3 → node 0

and
node 0 → node 3

Symbols: NodeID

Data 3

Data 0

3

0

www.dxram.io

Write Interest Manager – Data ready to send

IBDXNet – InfiniBand network subsystem 70

00

51

0→12

2→33

04

3→05

#✉ RTS NodeID RTS Queue

✴2✴3

Data signal ORB

+1
+1

2

3 1 52

-3

Send
Thread

T1

T2

NodeID
#✉ RTS

Send 3 ✉ s
from ORB5
to node 5

RTS = Ready to Send

Symbols:

5

3
5

www.dxram.io

Messaging vs. MPI

§ MPI = Message Passing Interface
• A standard used mainly in HPC for decades to solve distributed computations

§ Messaging = Sending/receiving of application “messages” for means of communication with
remote nodes
• Message: A string, byte sequence, (serialized) object

§ No similar messaging systems (with InfiniBand support) available in Java
§ MPI can be used similar to DXNet but is still different in many aspects (see full report)

• Even many MPI implementations do not implement (native) support for IB

IBDXNet – InfiniBand network subsystem 71

www.dxram.io

Evaluation

Evaluation 72

§ Typical network microbenchmarks
• Throughput: Uni- and bi-directional end-to-end
• Ping pong latency
• All-to-all throughput (up to 8 nodes)

§ Metrics: Throughput and latency
§ On 56 Gbit/s InfiniBand hardware
§ Comparing to:

• FastMPJ (MPI, Java)
• MVAPICH2 (MPI, C)

§ DXNet supports multi-threading while FastMPJ and MVAPICH2 do not

§ YCSB benchmark
• Compare DXRAM (using DXNet with IB) to RAMCloud
• See full paper

www.dxram.io

Evaluation – Throughput and latency (uni-dir)

IBDXNet – InfiniBand network subsystem 73

0

1

2

3

4

5

6

7

8

1 32 1024 32768 1048576
1

2

3

4

5

6

7

M
es

sa
ge

s
[m

ill
io

n/
s]

Th
ro

ug
hp

ut
 [G

B/
s]

Message Size [bytes]

DXNet ST
DXNet MT

FastMPJ WS64
MVAPICH2 WS64

ib_send_bw

1

10

100

1000

1 32 1024 32768 1048576
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

La
te

nc
y

[u
s]

M
es

sa
ge

s
[m

ill
io

n/
s]

Message Size [bytes]

DXNet ST
DXNet MT

FastMPJ

MVAPICH2
ib_send_lat

www.dxram.io

Evaluation – Throughput and nodes (bi-dir)

IBDXNet – InfiniBand network subsystem 74

0

2

4

6

8

10

12

1 32 1024 32768 1048576

2

4

6

8

10

12

M
es

sa
ge

s
[m

ill
io

n/
s]

Th
ro

ug
hp

ut
 [G

B/
s]

Message Size [bytes]

DXNet ST
DXNet MT

FastMPJ WS64
MVAPICH2 WS64

ib_send_bw

0

10

20

30

40

50

1 32 1024 32768 1048576

5

10

15

20

25

30

35

M
es

sa
ge

s
[m

ill
io

n/
s]

Th
ro

ug
hp

ut
 [G

B/
s]

Message Size [bytes]

DXNet ST
DXNet MT

FastMPJ WS16
MVAPICH2 WS2

www.dxram.io

DXLog: Fast logging to SSD

75

§ Backup Zones
§ Logging Architecture
§ 2-Level Logging
§ Backup-side Version Control
§ Evaluation (YCSB): Aerospike, Redis

www.dxram.io

Backup Zones

§ Scatter chunks of one peer to many backup peers:
• Aggregate processing power and SSD & network bandwidth for logging and recovery.

§ Each storage peer determines its own backup zones:
• Every chunk belongs to a backup zone of a fixed size (default 256 MB).
• Backup peers are chosen randomly, disjunctive or location-aware with configurable

replication factor and fixed replication ordering.
• Superpeers are informed on backup zone creation, only:

• Low overhead
• Superpeers know all backup zones of all storage peers and its backup peers

→ Important for recovery coordination.

Logging 76

www.dxram.io

Backup Zones – Backup Zone Tree

§ A backup zone might consist of locally created, immigrated and recovered chunks.
§ Updating or deleting a chunk → Inform all backup peers storing replicas on.
§ B-tree to store the backup zone affiliation of every chunk:

• Stores (beginning chunk ID, end chunk ID, zone ID) tuples.
• Overhead for a billion locally created chunks: 3 to 4 KB.

Logging 77

www.dxram.io

Logging Architecture

Logging 78

§ Storing replicas on remote peers:
• Replicating in RAM is too expensive

(inefficient RAM usage).
• Updating in-place on SSD: Too slow for

small objects.

§ Append data to a log:
• Best SSD utilization
• Low RAM consumption
• But, requires reorganization and version

control

www.dxram.io

2-Level Logging

Logging 79

§ Primary Log: stores chunks on SSD as fast as possible.
§ Secondary Logs: sort chunks by backup zone to speed up recovery.
§ Version Logs: store version numbers beneath logs for recovery and reorganization.

Order by Backup Zone

www.dxram.io

Backup-side Version Control

Logging 80

§ Version numbers are irrelevant on storage servers but are needed for reorganization and
recovery to identify valid chunks.
• Outdated chunks have smaller version number.
• Deleted chunks have version number -1 (no tombstones needed).

§ Simple version control not applicable:
• Versions cannot be stored in RAM (too expensive, again).
• Simple caching is useless as access is random.

§ Writing versions to SSD:
• Reading versions from SSD before writing an object decreases performance

dramatically.

www.dxram.io

Backup-side Version Control

Logging 81

§ Solution: using epochs (combining caching and writing to SSD):
• A fixed number of versions per secondary log is stored in buffers (called version

buffers).
• Version buffers are flushed to SSD if a threshold is reached (e.g. 3 MB).
• After flushing, the version buffer is empty and enters a new epoch.
• In every epoch all registered version numbers start with version 0 (no need to read

current version number from SSD).
• The version number of already registered chunks are incremented.
• A version number is only accountable with the corresponding epoch number.

www.dxram.io

Backup-side Version Control

Logging 82

ID Epoch Version
#Entries: 0
Threshold: 3

Epoch: 0

Action: getVersion(7)

ID Epoch Version
7 0 0

#Entries: 1
Threshold: 3

Epoch: 0

Action: getVersion(3)

ID Epoch Version
7 0 0
3 0 0

#Entries: 2
Threshold: 3

Epoch: 0

Action: getVersion(7)

ID Epoch Version
7 0 1
3 0 0

#Entries: 2
Threshold: 3

Epoch: 0

Action: getVersion(4)

ID Epoch Version
7 0 1
3 0 0
4 0 0

#Entries: 3
Threshold: 3

Epoch: 0

Action:

#Entries: 0
Threshold: 3

Epoch: 1

Action: getVersion(7)

ID Epoch Version
#Entries: 1
Threshold: 3

Epoch: 1

Action:

ID Epoch Version
7 1 0

ID Epoch Version
7 0 1
3 0 0
4 0 0

[Epoch 1, Version 0] > [Epoch 0, Version 1],

because:

[Epoch i, Version x] < [Epoch j, Version y], where (i < j) or (i = j and x < y)

www.dxram.io

Reorganization

§ Every secondary log is split into 8 MB segments.
§ Reorganization steps:

1. Read-in version log.
2. Choose segment to reorganize by time since last reorganization.
3. Read segment from SSD.
4. Iterate over buffered segment and validate every log entry by comparing with current

version number and verifying checksum.
5. Move valid entries within buffered segment by overwriting invalid log entries.
6. Write back cleansed segment.
7. Repeat steps 2 – 6 several times (default 20).

Logging 83

www.dxram.io

Large Chunks

§ Large chunks (e.g. > 1 MB) are seldom in target application domains but cannot be ignored.
§ Example: In a social network graph, a celebrity might be connected to millions of other users
→ The chunks for storing all edges might exceed segment size.

§ Solution: splicing and chaining.
• Every chain link can be identified, validated and error-checked without the other chain

links.

Logging 84

www.dxram.io

Yahoo! Cloud Serving Benchmark

§ YCSB was designed to quantitatively compare distributed serving storage systems.
• A set of simple operations (reads, writes range scans) and a tabular key-value data

model.

§ Workloads:
• Workload A: 10 100-byte objects per key, 10,000,000 keys, zipfian distribution, 50%

read and write operations.
• Workload B: Identical to A, but 95 % read and 5 % write operations.
• Workload G: One 64-byte object per key, 100,000,000 keys, zipfian distribution, 90 %

read and 10 % write operations, 10,000,000 operations.

Evaluation 85

www.dxram.io

Logging Performance with YCSB!

§ Setup: 16x Intel Xeon E3-1220, 16 GB RAM, 240 GB SSD, connected with Gigabit Ethernet
§ We used 8 storage servers and up to 8 YCSB clients (180 threads each) for benchmarking.

Evaluation 86

Workload G:
100,000,000 64-byte objects
90% read, 10% write

Workload A (write-heavy):
10,000,000 100-byte objects
50% read, 50% write

www.dxram.io

Logging Performance with YCSB!

§ Memory consumption during YCSB! performance evaluation:

Evaluation 87

www.dxram.io

Recovery

88

§ Failure Detection
§ Recovery Initialization
§ Local Recovery
§ Metadata Update
§ Evaluation (Azure): YCSB and RAMCloud

www.dxram.io

Failure Detection

§ Fail-stop server failure detection:
• Based on superpeer overlay

Recovery 89

0

11

20

31
42

55

54

51

48

47

59

17

2128

www.dxram.io

Failure Detection

§ Fail-stop server failure detection:
• Based on superpeer overlay
• Configurable heartbeats

Recovery 90

0

11

20

31
42

55

54

51

48

47

59

17

2128

Heartbeats

www.dxram.io

51

Failure Detection

§ Fail-stop server failure detection:
• Based on superpeer overlay
• Configurable heartbeats

§ Event system to handle failures.
§ Peers or other superpeers might detect a

failure earlier than the responsible
superpeer → Inform responsible
superpeer about failure.

Recovery 91

0

11

20

31
42

5555

54

48

47

59

17

2128

www.dxram.io

Failure Detection

§ Fail-stop server failure detection:
• Based on superpeer overlay
• Configurable heartbeats

§ Event system to handle failures.
§ Peers or other superpeers might detect a

failure earlier than the responsible
superpeer → Inform responsible
superpeer about failure.

Recovery 92

55

54

48

47

0

11

20

31
42

59

17

2128

www.dxram.io

Failure Detection

§ Fail-stop server failure detection:
• Based on superpeer overlay
• Configurable heartbeats

§ Event system to handle failures.
§ Peers or other superpeers might detect a

failure earlier than the responsible
superpeer → Inform responsible
superpeer about failure.

§ Superpeer propagates failure to all
superpeers which inform all peers.

Recovery 93

0

11

20

31

42

55

17

59

2128

54

48

47

Failure Propagation

www.dxram.io

Failure Detection

§ Fail-stop server failure detection:
• Based on superpeer overlay
• Configurable heartbeats

§ Event system to handle failures.
§ Peers or other superpeers might detect a

failure earlier than the responsible
superpeer → Inform responsible
superpeer about failure.

§ Superpeer propagates failure to all
superpeers which inform all peers.

Recovery 94

0

11

20

31

42

55

17

59

2128

54

48

47

Failure Propagation

www.dxram.io

Recovery Request

Recovery Initialization

§ The backup/recovery ordering is determined
on backup zone creation.

§ If the first backup server is unavailable, the
second will be notified and so on.

§ Send all requests for all backup zones of the
failed server at once for maximal
parallelization.

§ Collect the responses after the recovery was
completely initialized.

§ If response is missing, the recovery is
initialized on the next backup replica of that
backup zone.

§ Update metadata on superpeers.
§ Re-replicate chunks (once, only).

Recovery 95

0

11

20

31
42

55

59

2128

17

54

48

47

www.dxram.io

Local Recovery - Steps

1. Flush all corresponding log buffers.
2. Load version log for the secondary log from SSD for fast access.
3. Recover segment by segment as follows:

a) A segment is read into a byte buffer (default segment size: 8 MB).
b) Analyze every chunk by iterating over the byte buffer.

• The analysis includes validation (compare version numbers) and error detection.
c) Store valid and error-free chunks to the local memory management of DXRAM.

• Small chunks are bundled in batches up to 100,000 chunks to benefit from fast
batch allocation of the memory management.

4. Remove the secondary log from SSD.

Recovery 96

www.dxram.io

Local Recovery - Parallelization

Recovery 97

www.dxram.io

Microsoft Azure Testbed

§ The following experiments were executed in Microsoft’s Azure cloud in Germany Central with
up to 72 virtual machines of type Standard_DS13_v2:
• 8 cores (Intel Xeon E5-2673), 56 GB RAM, 112 GB SSD (max. cached throughput: 256

MBps) and 5 Gbit/s Ethernet.

§ Used Microsoft Azure scale sets:
• Set 1: Two identical scale-sets (one scale-set is limited to 40 VMs) based on a custom

Ubuntu 14.04 image with 4.4.0-59 kernel.
• Set 2: Debian 8 image and 3.16.0-4 kernel for RAMCloud (hardware and configuration

identical to 1).

Evaluation 98

www.dxram.io

Recovery Performance

§ Recovery benchmark steps:
• The server creates 500,000,000 64-byte chunks with a total payload of more than 30

GB, allocated to 144 backup zones.
• The data is then replicated to up to 72 slaves.
• After logging all chunks, the master is killed which initiates the recovery process for all

144 backup zones.

§ Results:
• The recovery times improve with the

number of backup peers.
• With 72 backup peers the complete

recovery process took less than 2 s.
• Recovery throughput >16.5 GB/s.

Evaluation 99

www.dxram.io

YCSB Benchmark – Recovery under High Load

§ Experiment setup:
• YCSB workload: 10 100-byte objects per key, 15,000,000 keys, zipfian distribution,

90% read and 10% write operations.
• 48 storage servers, with a total of 7.2 billion 64-byte chunks in RAM and 21.6 billion log

entries on SSD.
• 24 YCSB clients for benchmarking. Each YCSB client is configured to emulate 100

clients using one thread per client.

§ During the benchmark phase, three masters are shut down to analyze the recovery
performance with high overall system load.

Evaluation 100

www.dxram.io

YCSB Benchmark – Recovery under High Load

§ Results: The 24 clients executed around 2 million operations per second. The maximum
response time of all clients over the whole time is around 2.6 seconds, recorded during the
first failure (see figure below). The average response time is around 1.3 ms.

Evaluation 101

www.dxram.io

Recovery – Comparison with RAMCloud

Logging Recovery
Times (in s): Times (in s):

Evaluation 102

www.dxram.io

Recovery – Comparison with RAMCloud

§ Why is DXRAM faster than RAMCloud in this scenario?
• RAMCloud uses a log in RAM and distributes exact copies of the log segments to SSD

on backup servers → Every object of the failed server could possibly be in every
segment / on every backup server (in different versions as well).

• When recovery masters gather objects partition-wise, every single segment must have
been read (in parallel) and all objects of all partitions must be sent over network to the
right recovery master.

• During replay, every recovered object must be replicated three times as old backups
are unusable. Those segments might contain objects of all partitions and not only the
partition of one recovery master.

→ In RAMCloud, every object is sent over the network four times during recovery whereas
in DXRAM once, only.

Evaluation 103

www.dxram.io

DXRAM: Computations

104

§ Motivation
§ Job Service
§ Master Slave Service

www.dxram.io

Motivation

DXRAM: Computations 105

§ Computations on Storage Nodes benefit from locally stored chunks
→ Reduce latency and network load

§ Use available CPU resources

www.dxram.io

Job Service

DXRAM: Computations 106

§ Deploy light weight jobs to single nodes.
§ A job…

• …implements a simple interface (execute function)
• ...runs on a single node on a single core once per deployment
• …has access to all DXRAM services (Network, Storage, Nameservice, Job Service, …)

§ Job Service
• Configurable amount of worker threads
• Local scheduling to workers by work stealing
• Jobs can be submitted to remote nodes/Job services
• Load balancing of Job Services: job queue full, hot spot, data locality

www.dxram.io

Master Slave Service

DXRAM: Computations 107

§ Peers form a compute group
§ Groups can grow
§ Access to other nodes outside group

(storage)

§ Master: one peer as coordinator
§ Slaves: further peers as distributed workers

§ Tasks are submitted to compute groups

www.dxram.io

Master Slave Service - Tasks

DXRAM: Computations 108

§ Managed inter node concurrency
§ (Reusable) Unit of execution

• Loading data
• Processing step
• Printing of data, statistics, results

§ An implemented task runs (initially) on a
single core on every slave node of the
compute group concurrently

§ Further forking (multiple threads) during task
execution

§ Superstep synchronization before and at the
end of each task

www.dxram.io

Master Slave Service - Tasks

DXRAM: Computations 109

§ Task context on execution
• Compute group ID
• Own slave ID
• List of node IDs of every other slave
• Total number of slaves

§ Task Script
• Chain of Tasks
• Implicit synchronization after every task
• Flow control: Conditions

www.dxram.io

DXGraph: Graph Processing

110

§ Breadth-First Search

www.dxram.io

Breadth-First Search

DXGraph: Graph Processing 111

§ Implementation as specified by the Graph500 benchmark
§ Stress test for system: Highly random access
§ Standard top-down combined with bottom-up approach (reducing number of visited

vertices)
§ Compute task: Implements BFS

• Distributed and multithreaded implementation
• Delegates processing of non local vertices to owner node
• Lock-free bitmap based data structure
• Low overhead synchronization between BFS levels

www.dxram.io

BFS: DXGraph, Grappa and GraphLab

§ Scale 24 RMAT graph (Graph500 generator)
§ Private cluster, 4 nodes connected by Gigabit Ethernet

Evaluation 112

Total memory consumption Avg. BFS execution times

www.dxram.io

BFS on Hilbert

Evaluation 113

§ HPC system of our university:
• BULL: Cluster architecture, 112 nodes with 24 cores and 128 GB RAM each

§ Running DXGraph's BFS implementation on BULL cluster with Gigabit Ethernet network
§ Goals: Scalability, low memory overhead ⇒ storing many small objects

§ Graph sizes tested: Scale 28 (64 GB) to 32 (1 TB)
§ Random but equally distributed to 8 - 104 compute nodes

www.dxram.io

BFS on Hilbert - Results

Evaluation 114

