Efficient Messaging for Java Applications running in
Data Centers

Kevin Beineke, Stefan Nothaas and Michael Schottner

Institut fiir Informatik, Heinrich-Heine-Universitit Diisseldorf,
Universititsstr. 1, 40225 Diisseldorf, Germany
E-Mail: Kevin.Beineke @uni-duesseldorf.de

Abstract—Big data and large-scale Java applications often
aggregate the resources of many servers. Low-latency and high-
throughput network communication is important, if the appli-
cations have to process many concurrent interactive queries.
We designed DXNet to address these challenges providing fast
object de-/serialization, automatic connection management and
zero-copy messaging. The latter includes sending of asynchronous
messages as well as synchronous requests/responses and an event-
driven message receiving approach. DXNet is optimized for small
messages (< 64 bytes) in order to support highly interactive web
applications, e.g., graph-based information retrieval, but works
well with larger messages (e.g., 8 MB) as well. DXNet is available
as standalone component on Github and its modular design is
open for different transports currently supporting Ethernet and
InfiniBand. The evaluation with micro benchmarks and YCSB
using Ethernet and InfiniBand shows request-response latencies
sub 10 ps (round-trip) including object de-/serialization, as well
as a maximum throughput of more than 9 GByte/s.

Keywords—Message passing; Ethernet networks; InfiniBand;
Java; Data centers; Cloud computing;

I. INTRODUCTION

Today, many interactive applications are built upon very
large graphs, e.g., social networks [1], comparing molecu-
lar structures in bioinformatics [2] or mobile network state
management systems [3]. These graphs consist of billions of
small data objects which are typically held in memory to
provide low latency access. But, as data volumes grow fast
it becomes necessary to aggregate many servers or move to
expensive super computers. Usually, big data applications are
executed in cloud data centers or on high performance clusters
which provide fast networking with 10 GBit/s and beyond.
Distributed and parallel processing of in memory data based on
very fast networks requires the software stack to be designed
carefully, especially if latency is important.

Many big data applications are written in Java and benefit
from platform independence and a rich selection of libraries
supporting the programmer in designing distributed and paral-
lel applications [1], [4]-[8]. This includes many possibilities
to exchange data between Java servers, ranging from high-
level Remote Method Invocation (RMI) [9] to low-level byte
stream processing using Java sockets [10] or the Message
Passing Interface (MPI) for HPC applications [11]. DXNet
does not aim at replacing any of those solutions but to rather
complement the spectrum.

DXNet is a network library for Java-based applications
which has originally been designed for DXRAM a distributed
in-memory key-value store and DXGraph a graph processing

framework built on top of DXRAM. We provide DXNet as a

standalone library through GitHub [12] as we think it could

be useful for many other Java-based big data applications.
The contributions of this paper are:

e the DXNet architecture (highly concurrent and trans-
port agnostic);

e zero-copy, parallel de-/serialization of Java objects;

e lock-free, event-driven message handling;

e evaluations with 5 GBit/s Ethernet (Microsoft Azure)
and 56 GBit/s Infiniband networks.

The evaluation shows that DXNet efficiently handles high
loads with dozens of application threads concurrently sending
and receiving messages. Synchronous request/response pat-
terns can be processed in sub 10 us RTT (Round-Trip Time)
with Infiniband transport (including object de-/serialization).
And, high throughput is achieved even with smaller payloads,
e.g., bandwidth saturation with 1-2 KB payload on InfiniBand
and 256 byte payload on Ethernet.

The structure of the paper is as follows: after discussing
related work, we present an overview of DXNet in Section III.
In Section IV, we describe the lock-free Outgoing Ring Buffer
followed by the concurrent serialization in Section V. The
next section explains the event-driven processing of incoming
data. Sections VII and VIII present thread parking strategies
and transport implementation aspects. Evaluation results are
discussed in Section IX, followed by the conclusions.

II. RELATED WORK

DXNet combines high-level thread and connection man-
agement and a concurrent object de-/serialization with lock-
free, event-driven message handling and zero-copy data trans-
fer over Ethernet and InfiniBand (extensible). To the best of
our knowledge, no other Java-based network library provides
these communication semantics. Because of space constraints,
we compare DXNet with the most relevant related work, only.

Distributed shared memory (DSM) is re-gaining attraction
due to networks supporting RDMA but is not an option for
most existing Java applications as DSM requires a different
application architecture and an integration in the heap man-
agement of the Java Virtual Machine JVM) [13].

Java’s RMI [9] provides a high level mechanism to
transparently invoke methods of objects on a remote machine,
similar to Remote Procedure Calls (RPC). Parameters are auto-
matically de-/serialized and references result in a serialization
of the object itself and all reachable objects (transitive closure)
which can be costly [14]. Missing classes can be loaded from

remote servers during RMI calls which is very flexible but
introduces even more complexity and overhead. The built-in
serialization is known to be slow and not very space efficient
[14], [15]. Furthermore, method calls are always blocking.

Manta [16] improves runtime costs of RMI by using a
native static compiler. KaRMI [17], a drop-in replacement
for Java RMI, is implemented in Java without any native
code supporting standard Ethernet. KaRMI also replaces Java’s
built-in serialization reducing overhead and improving overall
performance. DXNet does not provide transparent remote
method calls but an efficient parallel serialization which avoids
copying memory. DXNet is primarily designed for parallel
applications and high concurrency, RMI for Web applications
and services.

MPI is the state-of-the-art message passing standard for par-
allel high performance computing and provides very efficient
message passing for primitive, derived, vector and indexed data
types [18]. As MPI’s official support is limited to C, C++ and
Fortran, Java object serialization is not provided. Nevertheless,
MPI is available for Java applications through implementations
of the MPI standard in Java [19] or wrappers of a native library
[20].

MPI-2 introduced multi-threading for MPI processes [18]
enabling well-known advantages of threads. Prior to MPI-2,
intra-node parallelization demanded the execution of multiple
MPI processes (and the use of more expensive IPC). To enable
multi-threading, the process has to call MPI_init_thread
(instead of MPI_init) and to define the level of thread
support ranging from single-threaded execution over funneled
and serialized multi-threading to complete multi-threaded ex-
ecution (every thread may call MPI methods at any time). A
lot of effort has been put into the last mode to provide a high
concurrent performance [21], [22]. Still, the performance is
limited compared to a message passing service designed for
multi-threading [21].

One of DXNet’s main application domains are on-
going applications with dynamic node addition and re-
moval (not limited to), e.g., distributed key-value stores
or graph storages. The MPI standard defines the re-
quired functionality for adding and removing processes (over
Berkeley Sockets with MPI_Comm_join or by calling
MPI_Open_port and MPI_Comm_accept on the server
and MPI_Comm_connect on the client). Unfortunately, most
recent MPI implementations are still not supporting these
features entirely [23], [24]. Furthermore, job shutdown and
crash handling is also limited [24]. MPI is particularly suitable
for spawning jobs with finite runtime in a static environment.
DXNet, on the other hand, was designed for up- and down-
scaling and handling node failures. In [25], DXNet was used
in the in-memory key-value store DXRAM to examine crash
behavior and scalability.

High level mechanisms for typical socket-like interfaces
supporting Gigabit Ethernet (and higher) are provided by
Java.nio [26], [27], Java Fast Sockets (JFS) [28] or High Per-
formance Java Sockets [29]. DXNet uses Java.nio to implement
a transport for commonly used Ethernet networks.

III. OVERVIEW

DXNet relieves programmers from connection manage-
ment, provides transferring Java objects (beyond plain Java.nio
stream sockets) and allows the integration of different under-

Java Application

DXNet —%W
onnection Manager

Buffer Queue (IBQ)

Network Transport

Implementations e alNIO

IB Verbs Other

Figure 1. Simplified DXNet Architecture

lying network transports, currently supporting reliable verbs
over InfiniBand and TCP/IP over Ethernet. In this section, we
give a brief overview of the interfaces and functionality of
DXNet (see Fig. 1). Further details can be found in the GitHub
repository [12].

A. Basic Functionality

Automatic connection management. DXNet abstracts
physical network addresses, e.g., IP/Port for Ethernet or GUID
for InfiniBand, by using nodelDs. The aforementioned node
address mappings are registered in the library and are mutable
for server up- and downscaling. A new connection is opened
automatically when a message needs to be sent to another
server which is not connected thus far. In case of errors, the
library will throw exceptions to be handled by the application.
Connections are closed based on a recently used strategy, if
the configurable connection limit is exceeded, or in case of
network errors which may be reported by the transport layer
or detected using timeouts, e.g., absent responses.

Sending messages. DXNet sends messages asynchronously
to one or multiple receivers but also provides blocking re-
quests (to one receiver) which return when the corresponding
response is received (association of response and requests
is transparently managed by DXNet). Messages are Java
objects and serialized by using DXNet’s fast and concur-
rent serialization (providing default implementations for most
commonly used objects, see Section V). The serialization
writes directly into the Outgoing Ring Buffer (ORB) which
aggregates messages for high throughput (see Section IV) and
is allocated outside of the Java heap. Sending data is performed
by a decoupled transport thread based on event signaling.
DXNet also includes a flow control mechanism, which is not
further described here.

Receiving messages. When incoming data is detected by the
network transport, it requests a pooled native memory buffer
(avoiding to burden the Java garbage collector) and copies the
data into the buffer (see Section VI and Fig. 1). The buffer con-
taining the received data is then pushed to the Incoming Buffer
Queue (IBQ), a ring buffer storing references on buffers which
are ready to be deserialized (see Section VI). The buffer pool
and the IBQ are shared among all connections. The buffers of
the IBQ are pulled and processed asynchronously by dedicated
threads. Message processing includes parsing message headers,
creating the message objects and deserializing the payload
data. Finally, the received message is passed back to the
application (as a Java object) using a pre-registered callback
method.

A brief overview of DXNet’s API is shown in Table I.

TABLE I. DXNET’S APPLICATION INTERFACE

new DXNet (config, nodeMap)

initialize/configure (max. connections, server address mappings etc.)

MyMessage extends Message/Request/Response
exportObject (exporter)
importObject (importer)
sizeOfObject ()

define message (serializable Java object) by implementing three methods
serialize message with predefined methods from exporter
deserialize message with predefined methods from importer
return payload length

sendMessage (message)

send message asynchronously (receivers defined in message instance)

sendSync (request, timeout)

send request/response synchronously

MyReceiver implements MessageReceiver

onIncomingMessage (message)

receive messages/requests as Java objects
pre-registered callback handler function

B. High Throughput and Low Latency

A key objective of DXNet is to provide high throughput
and low latency messaging even for small messages found in
many graph applications, for instance. We achieve this with
a thread-based and event-driven architecture using lock-free
synchronization, zero-copy, and zero-allocation.

Multithreading. All processing steps like serialization,
deserialization, message transfer and processing are handled by
multiple threads which are decoupled through events allowing
high parallelism.

Lock-free event signaling. Dispatching processing events
between threads is implemented using lock-free synchroniza-
tion allowing low-latency signaling. CPU load is managed
without impairing latency by parking currently idling threads.

Fast serialization. DXNet implements fast serialization of
complex data structures and writes data directly into an ORB.
The ORB can be accessed by many threads in parallel and
ORBs are not shared between different connections increasing
concurrency even more. The processing of incoming messages
is also highly scalable because of the event-driven architecture.

Zero copy. DXNet does not copy data for messaging
(except de-/serialization). For TCP/IP, we rely on Java’s Direct-
ByteBuffers and for InfiniBand on verbs pinning the buffers
used by DXNet.

Zero allocation. DXNet uses object pooling wherever
possible avoiding time-consuming instance creation and, even
more important, not burdening the Java garbage collector
which may block an application in case of low memory for
multiple seconds.

C. Network Transport Interface

DXNet supports different underlying reliable network
transports. The integration of a new transport protocol requires
implementing just five methods:

signal data availability on connection (callback);
pull data from ORB and send it;

push received data to IBQ;

setup a connection;

close a connection.

IV. LoOCK-FREE OUTGOING RING BUFFER

The Outgoing Ring Buffer (ORB) is a key component for
outgoing messages and essential for providing high throughput
and low latency. The latter is achieved by a highly concurrent
approach based on lock-free synchronization.

Each connection has one dedicated ORB allowing concur-
rent processing of different connections. The ORB itself allows

Bp next message to consume
Fc end of messages to consume
Fr next free byte for producer
-~ P, thread-local copy of Fp

avail.

for sending

S ~ ORB_ I —
Bp Fe Fp
Serialization Cores: E i} 3 Sending Core:

Figure 2. ORB for parallel serialization and aggregating out-
going messages.

many application threads serializing their outgoing objects
concurrently and directly into the ORB. The ORBs are allo-
cated outside of the Java heap in native memory allowing zero-
copy sending by the network transport. Directly serializing
Java objects into the ORB is more efficient than serializing
each object in a separate buffer and combining them later by
copying these buffers. The ORB preserves message ordering
as given by the application threads and aggregates smaller
messages in order to achieve high throughput. We decided to
use lock-free synchronization for concurrency control which
is more complex but more efficient with respect to latency
compared to locks.

A. Basic Lock-Free Approach

The ORB has a configurable but fixed size and is accessed
concurrently by several producers (application threads) and one
consumer (dedicated transport thread for sending messages).
The configurable buffer size limits the maximum number of
messages/bytes to be aggregated. For our experiments (see
Section IX), we used 1 MB and 4 MB ORB:s.

Fig. 2 shows the ORB with three application threads
producing data (serialization cores). All pointers move forward
from left to right with a wrap around at the end. The white
area between F'p and Bp is free memory.

Messages available for sending (fully serialized) are found
by the consumer (sending core) between Bp and F. The
consumer sends aggregated messages and moves Bp forward
accordingly but not beyond Fo. All messages between Fi» and
F'p are not yet ready for sending as parallel serialization is still
in progress.

F'p is moved forward concurrently (if the buffer has enough
space left) by the producers using a Compare-and-Set (CAS)
operation, available in Java through Unsafe (see Section
IV-C). Therewith, each producer can concurrently and safely
store the position of Fp in a local variable F, and adjust Fp
by its message size. All F} pointers (thread-local variables)
are used by the associated producer for writing its serialization
data concurrently at the correct position in the ORB. The
light-colored arrows in Fig. 2 show the starting point of
each serialization core (producer) whereas the solid-colored

F’ thread-local copy of F

’ 0 S s » ™, B = back pointer
L, _- F = front pointer
SN, S— CUB = P

B F [
Serialization Cores: {:& Lk Sending Core:

Figure 3. Catch-Up Buffer (CUB). Allowing faster producers
returning early and not wasting CPU cycles for waiting.

ones show the current position. In the example, the purple
producer finished its serialization first and the green and orange
producers are still working.

F¢ is moved forward by producers when messages are fully
serialized. In Fig. 2, the purple producer finishes before the
orange and green ones but cannot set Fio to Fp because the
two preceding messages (from the other producers) have not
been completely serialized yet. Each producer can easily detect
unfinished preceding messages by comparing its starting point
(light-colored arrow) with Fio. Obviously, the purple starting
point is not equal to Fiz. A naive solution lets fast producers
wait for slower ones. As we do not want to impact latency
we cannot use locks/conditions here. An alternative solution is
to busy-poll until all preceding messages have been serialized.
Finally, F- can be set forward and the thread can return.

B. Optimized Lock-Free Solution

The basic solution already avoids the overhead of locks, but
with increasing number of parallel serializations the probability
of threads having to wait for slower ones increases. The busy-
polling can easily overload the CPU. Reducing the polling
frequency of producers by sleeping (> 1 ms) or parking (> 10
us) increases latency too much. Instead, we propose a solution
which avoids having fast producers waiting for slower ones
by leaving a notice and returning early to the application. This
notice includes the message size so that slower producers can
move Fp forward for the faster ones. But, message ordering
must be preserved.

Our solution is based on another configurable fixed-size
ring buffer called Catch-Up Buffer (CUB). As mentioned
before, we allocate one ORB for each connection which is
now complemented by one associated CUB (e.g., with 1000
entries) for every ORB. The CUB is implemented using an
integer array, each entry for one potential left-back notice from
faster producers. An entry will be O if there is no notice or
> 0 representing the message size if a producer finished faster
than its predecessors. In the latter case, a slower producer will
move forward Fp by the left-back message size.

Fig. 3 shows a CUB corresponding to the ORB shown in
Fig. 2. The front pointer F' is moved concurrently using a CAS
operation (similar to Fp in the ORB). The colored F’ are the
thread-local copies needed by the producers to leave back a
potential notice at the correct position in the CUB. The 64 is a
notice from the purple producer (its message size, filled purple
box in Fig. 2.) who finished fastest and returned already to the
application. The green and orange producers are still working
(0 = no notice). If the green producer would now finish before
the orange one it would also fill in its message size and return
immediately.

If the orange producer finishes next, it moves forward F
in the ORB as well as B in the CUB (leaving no notice). The
green one will do the same, but twice as it will detect the notice

(64) after committing its serialization and thus move forward
Fe in the ORB by 64 bytes and also B (now pointing to F’
in the CUB, indicating we are done).

It is important that the order of entries in the ORB and
the CUB is consistent, meaning, we need to move forward F
and F'p, as well as B and F¢ synchronously. We do this, by
storing each of those two indexes in one 64-bit long variable
in Java and, as the CAS operation is working atomically on
64-bit longs, we can avoid locks.

Two more challenges remain, namely large messages which
cannot be serialized at once and a potential ORB overflow
during the serialization (both discussed in Section V).

C. Native Memory

The ORB is allocated in native memory (off Java heap)
allowing the underlying network transports to send messages
without copying them. The class Unsafe provides basic meth-
ods for memory allocation, memory copy and reading/writing
primitives from/into native memory. Furthermore, Unsafe is
very fast because of extensive optimizations and is widely used
in third-party libraries [30].

We favor Unsafe over DirectByteBuffers [27] for two
reasons. First, access is faster (e.g., missing boundary checks
we already handle on higher level). Second, Unsafe is more
versatile because it allows accessing memory which was
allocated in C/C++ code (e.g., used for InfiniBand).

V. SERIALIZATION

DXNet is designed to send and receive Java objects which
need to be de-/serialized from/into a byte stream of messages.
The built-in serialization of Java (interface Serializable)
as well as file-based solutions are too slow and have a large
memory footprint [31] (because of automatic un-/marshaling
and the use of separators). Other binary serializer like Kyro
[32], for instance, either do not support writing directly into
native memory or interruptible processing which is needed
by DXNet (see Section V-A and V-B). We propose a new
serializer addressing all these limitations while still being
intuitive to use. The programmer has to implement two in-
terfaces Importable and Exportable. The former re-
quires implementing the method importObject (), the
latter exportObject () and both sizeOfObject ().

A. Export

Exporter. The serialization (or export) of Java objects re-
quires an exporter which is passed to exportObject ().
The exporter class provides default method implementations
for the serialization of all primitives, compact numbers and
Strings and can be extended for supporting custom types (all
types can also be arranged in arrays). Compact numbers are
coded integers using a variable number of bytes as needed to
reduce space overhead.

The exporter writes directly into the ORB by using Unsafe
(see Section IV). It stores the start position within the ORB, the
size of the ORB and the current position within the message.

Exporting an object involves two steps: exporting the mes-
sage header (see Fig. 4) which has a fixed size and exporting
the variable-sized payload by calling exportObject ().

DXNet uses its default exporter for serialization
which is optimized for performance. It is complemented by

10 Bytes

MessagelD Type Subtype Cat. X Payload Size
Figure 4. Message header. Cat.: message, request or response;

X: exclusive or not (ordering).

two other exporters (described below) for handling messages
which do not fit in the ORB without copying buffers.

Buffer overflow. If the end of the ORB will be reached
during the serialization of an object, DXNet switches to the
overflow exporter. The overflow exporter performs a
boundary check for each data item of an object and writes
bytes with a wrap-around to the beginning of the ORB, if
necessary. The resulting message is sent as two pieces over
the network stream avoiding copying data.

Large messages. Serialized objects resulting in messages
larger than the ORB must be written iteratively. First, the
entire unused section of the ORB (see Fig. 2) is reserved and
filled with the first part of the message. If the back pointer is
reached, the export is interrupted and its current state is stored
inan unfinished operation instance to allow resuming
serialization as soon as there is free space in the ORB again.

Unfinished operation. The instance stores the interrupt
position within the message and the rest of the current opera-
tion. Depending on the operation, the rest is either a part of a
primitive which can be stored in a 1ong within the unfinished
operation or an object with partly uninitialized fields whose
reference can be stored.

Resume serialization after an interrupt. To continue the
serialization, the method exportObject () is called again
(threads return after being interrupted during serialization)
and all previously successfully executed export operations are
automatically skipped until the position stored in the unfinished
operation is reached. The rest of the object is serialized
from there (might be interrupted, again). For exporting large
messages, the large message exporter is used, which
extends the overflow exporter.

B. Import

All incoming messages are written into native memory
buffers taken from the incoming buffer pool and are pushed
to the IBQ (see Section VI). Each buffer contains received
bytes (one or several messages) from the connection stream.
The underlying network independently splits and aggregates
packets resulting in a buffer beginning and ending at any byte
within a message. DXNet is able to serialize split messages
without copying buffers.

The import works analogously to the export. Messages
are deserialized directly from native memory by using Un-
safe (message header and payload). The fast default
importer is complemented by three other importers (de-
scribed below) for handling split messages. This requires to
handle three situations: buffer overflow (tail of message/header
missing), buffer underflow (head of a message/header is miss-
ing) and both combined.

Buffer overflow. When the buffer’s end will be
reached before the message is complete, we switch to
the overflow importer. It does boundary checks and
uses the unfinished operation (see Section V-A) when
necessary. Furthermore, the serialization is aborted with
an IndexOutOfBoundsException handled by DXNet

User : DXNet

Connection

FC Handled data Received data Send Sent

et Loce I
Threads N o Notify FC on incoming

I Push buffer to Incoming
reation I |Haader messages) Buffer Queue

suopoung Ja|puey

Coordinator
(MCC)

Figure 5. Receiving and processing messages. Green: Native
memory access.

avoiding returning invalid values for succeeding operations.

Buffer underflow. This situation occurs after a buffer
overflow (on the same stream). It is known apriori and handled
by the underflow importer, which uses the unfinished
operation instance (passed from the overflow importer) con-
taining all information necessary to continue deserialization.

Buffer under- and overflow. When a message’s head and
tail is missing (likely for large messages), the message is
handled by the underoverflow importer.

C. Resumable Import and Export Methods

Messages may be split caused by DXNet’s buffering or
the underlying network. In order to avoid copying buffers, we
require both import and export methods to be interruptible
and idempotent as they may be called multiple times for one
object (to avoid blocking threads, see Sections V-A and V-B).
DXNet’s importer and exporter methods are sufficient for most
object types, but custom object structures must be aware of this
and avoid functions causing side effects (e.g., I/O access).

VI. EVENT-DRIVEN PROCESSING OF INCOMING DATA

Fig. 5 gives an overview of the parallel event-driven
processing of incoming data. Like for the ORB, we use multi-
threading, lock-free synchronization, zero-copy and zero-
allocation to provide high throughput and low latency.

Receiving process. The network transport pulls a buffer
from the incoming buffer pool when new data can be received
and fills it accordingly. The buffer is then pushed to the
IBQ and processed by the Message Creation Coordinator
thread (MCC) by deserializing the message headers. The
message headers are pushed to the message header store
afterwards. Multiple message handler threads concurrently
create the message objects, deserialize the messages’ payloads
and pass the received Java objects to the application using its
registered callback methods. When all data of a buffer has been
processed, it is released and pushed back into the incoming
buffer pool.

Incoming buffer pool. The buffer pool provides buffers,
allocated in native memory, in different configurable sizes
(e.g., 8 x 256 KB, 256 x 128 KB and 4096 x 16 KB). The
transport pulls buffers using a worst-fit strategy as the amount
of bytes ready to be received on the stream is unknown. It can
also scale-up dynamically, if necessary.

The buffer pool management consists of three lock-free ring
buffers optimized for access of one consumer and N producers
(similar to the ORB but without the CUB, see Section IV).

A. Parallel Message Deserialization

Filled buffers are pushed by the transport thread into the
IBQ. The IBQ is a basic ring buffer for one consumer and one
producer and is synchronized using memory fences. The IBQ
may be full and require the transport thread to park for a short
moment and retry (see Section VII).

High throughput requires a parallel deserialization. As the
received messages of the incoming stream can be split over
several incoming buffers (see Section V-B), the buffer pro-
cessing must be in-order and we need a two-staged approach
to enable concurrency. The MCC thread pulls the buffer entries
from the IBQ, deserializes all containing message headers
(using relevant state information stored in the corresponding
connection object) and pushes them into the message header
store. Message payload deserialization based on the message
headers can then be done in parallel by the message handler
threads. This approach is efficient as the time-consuming pay-
load deserialization and message object creation is parallelized.

The deserialization of split messages’ payload (last message
in buffer, which is not complete) must be in-order as well
because all preceding parts of a message must be available
to continue the deserialization of a split message. We address
this situation by the MCC detecting and deserializing not only
the header but the payload fraction within the current buffer,
as well, for the split message. The rest of the message in the
next buffer can be read by a message handler, again.

Split message headers are not a problem as deserialization of
message headers is always done by the MCC which can store
incomplete message headers within the connection object and
continue with the next buffer.

Message header store. As mentioned before, the MCC
pushes complete message headers to the message header store.
The latter is implemented as a lock-free ring buffer for N
consumers and one producer. Synchronization overhead is
reduced by the MCC buffering the small message headers and
pushing them in batches into the message header store. The
batch size is limited but configurable, e.g., 25 headers.

Message header pool. Message headers are pooled, as well,
in another single consumer, multiple producers lock-free ring
buffer. Furthermore, message headers are pushed and pulled in
batches. To reduce the probability of multiple message handler
threads returning message headers at the same time, the batch
sizes differ for every message handler.

Returning of buffers. A pooled buffer must not be returned
before all its messages haven been deserialized. Because of
the concurrent deserialization and split messages, we use
the MCC incrementing an atomic counter for every message
header pushed to the message header store (more precisely, the
counter is increased once for every batch of message headers).
Accordingly, the message handlers decrement the counter for
every deserialized message. When all messages have been
deserialized, the buffer can be safely returned to the pool.

We could run out of buffers during high throughput, if
the MCC deserializes headers faster than the message handler
threads can handle. Although we can scale up the number
of incoming buffers, we prefer to throttle the MCC when a
predefined number of used buffers is exceeded to reduce the
memory consumption. Another benefit of limiting the amount
of incoming buffers is that all buffer states like the message
counters, the buffers’ addresses or the unfinished operations
which are filled for incomplete messages can be allocated once

and reused for every incoming buffer to be processed.

Message Ordering. DXNet allows applications to mark
messages and thus ensure message ordering on a stream/con-
nection. All marked messages are guaranteed to be processed
by the same message handler. All other steps preserve mes-
sage ordering by default. For achieving maximum throughput,
marking all messages is not advisable.

VII. THREAD PARKING STRATEGIES

Lock-free programming allows low-latency synchroniza-
tion but can easily overload a CPU by uncontrolled polling
using CAS operations. DXNet implements a multi-level flow
control with explicit message flow regulation and implicit
throttling if memory pools drain and queues fill-up. We address
three thread situations: blocked (the thread waits for another
thread/server finishing its work because a pool is empty or
queue full), colliding (failing CAS operation because another
thread entered a critical section faster) and idling (the thread
has nothing to do and waits for another thread/server commit-
ting new work).

Blocked thread. When blocked, the thread can park to
reduce the CPU load because it is too fast compared to other
threads/servers. However, the thread should not park for a long
period to avoid restraining other threads/servers. Experiments
showed that a sane park period is between 10 and 100 ps.
Java allows minimum parking times of around 10 to 30 ps
for a thread with LockSupport.parkNanos () for Linux
servers with x86 CPUs.

Colliding thread. When colliding, the thread will repeat the
CAS operation with updated values until successful because
the thread is about to commit something and this should
be done as fast as possible. However, reducing the collision
probability (e.g., the ORB optimization described in IV-B)
reliefs the CPU significantly.

Idling thread. This situation occurs, if a thread has nothing
to do at the moment, e.g., a transport thread polls an empty
ORB, the MCC polls an empty IBQ or a message handler polls
an empty message header store. However, new work events
can arrive within nanoseconds. Latency is minimized when
threads do not park or yield, but only as long as the CPU is
not overloaded. In case of CPU overload situations, parking
threads can reduce latency.

We address this with an overprovisioning detection com-
bined with an adaptive parking approach (10 to 30 ps), if
the number of active threads (application threads and network
threads) reaches a threshold, e.g., four times the number of
cores, see also Section IX-A for the evaluation.

Idling for longer periods, e.g., applications not exchanging
messages for a longer period of time, must be addressed,
too. DXNet detects this, e.g., a network thread idling for one
second (configurable time), and starts parking threads, if idling,
reducing CPU load to a minimum.

VIII. TRANSPORT IMPLEMENTATIONS

DXNet has an open architecture supporting different net-
work transport technologies. Currently, we have transport
implementations for TCP/IP over Ethernet (using Java.nio),
reliable verbs over Infiniband (based on JNI), and Loopback
(for evaluation). Because of space constraints, we will only
sketch some important aspects of these transports.

The Ethernet transport (EthDXNet) implementation is
based on Java.nio and maps DirectByteBuffers to the ORB
allowing to send data without copying it in user-space. Fur-
thermore, two channels are opened for every connection to
avoid channel duplication and for providing a side-band flow
control channel for each connection. Channel duplication may
occur when two servers create connections to each other
simultaneously and must be avoided. The second channel al-
lows exchanging flow control messages necessary to maximize
throughput on a connection by using the back-channel.

The InfiniBand transport accesses the IBDXNet library
(C++) using JINI. IBDXNet utilizes ibverbs to implement direct
communication using the InfiniBand HCA. IBDXNet uses
one dedicated send and one dedicated receive thread, both
processing outgoing/incoming data in native memory. Context
switching from C++ to Java was designed carefully and is
highly optimized to avoid latency.

The Loopback transport is used for the experiments in this
paper allowing to study the performance of DXNet without
any bottlenecks from a real network. Data is not sent over
a network device nor the operating system’s loopback device
(latency would be considerably high) but is directly copied
from the ORB to a pooled incoming buffer. Furthermore, the
Loopback transport simulates a server sending and receiving
messages at highest possible throughput allowing to evaluate
DXNet’s performance.

IX. EVALUATION

We evaluate the proposed concepts using Loopback and
three different networks: 1 GBit/s Ethernet, 5 GBit/s Ethernet
and 56 GBit/s InfiniBand. The Loopback is used to evaluate
DXNet’s concepts without any limitations of an underlying
network.

Loopback and 5 GBit/s Ethernet tests were run in Mi-
crosoft’s Azure cloud in Germany Central with up to 18
virtual machines from the type Standard_DS13_v2 which are
memory optimized servers with 8 cores (Intel Xeon E5-2673),
56 GB RAM and shared 10 GBit/s Ethernet connectivity (two
instances per connect). We deployed a custom Ubuntu 14.04
image with 4.4.0-59 kernel and Java 8. The tests with 1 GBit/s
Ethernet and InfiniBand were executed on our private cluster
servers with 64 GB RAM, Intel Xeon E5-1650 CPU and
Ubuntu 16.04 with kernel 4.4.0-64.

We use a set of micro benchmarks for the evaluations in
Sections IX-A and IX-B which send messages or requests of
variable size with a configurable number of application threads.
All throughput measurements refer to the payload size which is
considerably smaller than the full message size, e.g., a 64-byte
payload results in 115 bytes to be sent on IP layer when using
Ethernet. Additionally, all runs with DXNet’s benchmarks are
full-duplex showing the aggregated performance for concur-
rently sending and receiving messages/requests.

A. Loopback

As mentioned before, we want to evaluate the efficiency
of DXNet’s concepts without any network limitations. Fig. 6
shows message processing times and throughputs for different
message sizes when using the Loopback transport on a typical
cloud server (Standard_DS13_v2). Messages up to 2 KB can
be processed in around 500 ns. Larger messages require

3000

T T T
Processing Time +——+—i

114
Throughput —><— 000

124
\
\
1

2500 | 4 12000

I
S
[
2 1
2000 - J A 10000 &
= V| =
@ / 4 5
& 1500 |- / 8000 H
£ / =)
= | 4 6000 3
2 1000 - / £
2 % 1 4000
o /
o - I 3+
& 500’*%\%%7%%%—%%/%’ - 2000
-
0 S N x*}k""’}{/ ! 1 1 0
1 4 16 64 256 1024 4096 16384

Message Size

Figure 6. 107 Messages, 1 App. Thread, 4 Message Handlers.

7000

T

1 Handler
2 Handlers —
6000 - 4 Handlers —+—
8 Handlers
16 Handlers ——+—
32 Handlers —+—
64 Handlers —+—
4000 + 128 Handlers —+—

5000 |-

3000 [

2000 ><%\f~/

1000 F—— —

Processing Time per Message [ns]

0 L L L L L L
1 2 4 8 16 32 64 128

Number of Application Threads

Figure 7. 107 Messages, 1024 Bytes Payload.

increasing processing times, as expected. The throughput in-
creases linearly with the message size up to 8 KB messages
and is capped at around 14 GByte/s aggregated throughput for
sending and receiving of larger messages. The Linux tool mbw
determined a memory bandwidth of 7.19 GByte/s for a 16 GB
array and 16 KB block for the used servers which explains
the maximum throughput (saturation of the available memory
bandwidth).

In Fig. 6, we studied messages with up to 16 KB payload
size as DXNet is primarily designed to perform well with
small messages. We also tested larger messages (larger than
the ORB, configured with 4 MB here) and measured a message
throughput of around 5.4 GByte/s with § MB messages.
The throughput is lower as application threads and transport
thread work sequentially for larger messages (see Section
V-A). However, if the application needs to often handle large
messages, throughput can easily be improved by using a larger
ORB.

DXNet is designed to efficiently support concurrent appli-
cation threads sending and receiving messages in parallel. Fig.
7 shows that the processing time for 1 KB messages is stable
from one to 64 and only slightly increases with 128 application
threads. Additionally, Fig. 7 shows the performance with a
varying number of message handlers peaking with two to four.
Obviously, 128 application threads and 128 message handlers
overstress the CPU (8 cores) significantly. The results for all
other constellations are as expected showing DXNet’s capabil-
ity of efficiently handling hundreds of concurrent threads.

We also evaluated request-response latency by measuring
the RTT, which includes sending a request, receiving the

100000

T
Average
95th Percentile
99th Percentile
99.9th Percentile

10000

1000

100

Request-Response Latency [us]

10 F

1 2 4 8 16 32 64 128
Number of Application Threads

Figure 8. 105 Requests, 2 Message Handlers, 1 Byte Payload.

Node 1 Node 2 Node 1

Buffer Buffer

Pracacein Deserialization | Serial. Pribadsin
04ps | |sends i 07ps |03us | seny/| | RS

Rev Siie Rev
0.2 us 0.2 us

Serialization Deserialization

0.7 ps

Req.iResp.

LIy MessageCreationCoordinators: L_r} MessageHandlers: D

Serialization Buffer [Deserialization ESeriaI. I Buffer Deserialization
06 Send/ Processing | 0 [0 3 Send/ Processing 08 {
.6 ps .8 s .3 us .8 s
Rev 0.5 us L i Rev 0.5 ps
‘ 0.2 us 0.2 us

Application Threads: 5 F Send Threads: - _F

Figure 9. Breakdown of Request-Response Latency for 1024-
byte Requests. One application thread (on top) and four (at the
bottom). Grey bars indicate inter-thread communication.

10000 T T T T T T 3000
Normal: Processing Time +——+—i 1
—_ Normal: Latency ——>—
2 Optimized: Processing Time —+—i 4 2500 ©
5 8000 - Optimized: Latency =
o >
a S 2
3 7| 2000 g
= 6000 3
g]
a 1500 ¢
[o
€ &
£ 4000 - g
4
‘g‘ 1000 =
w [
u =]
i
2 - o
g 2000 500 &
a
0 — 0
1 2 4 128

Number of Application Threads

Figure 10. 107 Message or 10 Requests, 2 Message Handlers,
1 Byte Payload.

request, sending the corresponding response and receiving the
response. Fig. 8 shows the latency for small requests with
increasing number of application threads. The average RTT
with one and two application threads is under 5 ps. With up
to eight threads the RTT increases slower than the number of
threads because requests can be aggregated for sending. With
more threads the increase rate is higher.

Fig. 9 shows the breakdown of request-response latency for
one and four application threads and 1024-byte requests. This
is a best-effort approximation as time measurement is costly
and influences the processing. As expected de-/serialization ac-
counts for the majority of the RTT and deserialization is slower
than serialization because of the message object allocation
and creation. With more application threads or asynchronous
messages, all depicted steps are executed in parallel.

T
Never Park

Always Park —>—

Detection —%—

1000 ¢

Request-Response Latency [us]

1 I I I I I I
1 2 4 8 16 32 64 128

Number of Application Threads

Figure 11. 10 Requests, 2 Message Handlers, 1 Byte Payload.

Optimized Outgoing Ring Buffer. The benefits of the
CUB, discussed in Section IV, can be seen in Fig. 10. Without
the optimization the message processing time increases signif-
icantly with more than four application threads sending mes-
sages (with 128 threads nearly 20 times higher). Furthermore,
the RTT diverges considerably with more than 32 application
threads as well.

Overprovisioning Detection. Fig. 11 shows the importance
of the thread parking strategy (see Section VII). The RTT is
25 times larger when using one application thread and always
parking network threads. All three strategies match with 32
threads and diverge a little with more threads. The never park
strategy is at disadvantage with many threads (128) and the
RTT is around 100 ps larger than with the adaptive approach.

The evaluation with Loopback transport shows the high
throughput and low latency of DXNet. Furthermore, DXNet
offers a high stability when used with many threads sending
and receiving messages in parallel.

B. Comparing Network Transports

Fig. 12 shows the message processing time and throughput
for all three network transports (Ethernet and Loopback on
cluster and cloud instances) with varying payload size. As
expected, InfiniBand has the lowest processing overhead and
highest throughput of all physical devices.

The comparison between the 1 GBit/s Ethernet of the private
cluster and 5 GBit/s Ethernet in Azure cloud reveals interesting
insights. Obviously, message throughput is higher in the cloud
for large messages. But, message throughput is higher and
processing time is lower on the cluster for messages smaller
than 64 bytes which is most likely caused by the virtualization
overhead of cloud servers. Loopback is also considerably faster
on cluster instances (< 300 ns processing time and > 16
GByte/s throughput).

Fig. 13 shows the request-response latency and throughput
for requests sent by four application threads. Again, 1 GBit/s
Ethernet on our cluster performs better for small payloads (<
1024) than 5 GBit/s Ethernet in the cloud. For larger requests
the bandwidth becomes more and more important favoring the
cloud network. Both Ethernet networks are far off the latencies
InfiniBand achieves. For small request (< 512 byte payload)
the RTT is consistently under 10 ps and rises to only 16 us for
16 KB requests. Hence, the throughput is much higher with
InfiniBand as well.

The evaluation with three physical transports confirms the

Loop‘back Clou‘d —t— ‘ Loo;;back Cloua —t— ‘
Loopback Cluster —&— £ Loopback Cluster —&—
i Ethernet Cloud (5 GBit/s) Ethernet Cloud (5 GBit/s) [10000
£ 100000 F Ethernet Cluster (1 GBit/s) ——>k— 4 Ethernet Cluster (1 GBit/s) +——>k—
g’, InfiniBand Cluster (56 GBit/s) —— InfiniBand Cluster (56 GBit/s) —H=—
g @
§ - 1000 E
% 10000 ¢ *] §
£ i =)
E 00 3
2 z
3 4 10
£ i
100 L L L L L L L L L L L L 1
1 4 16 64 256 1024 4096 16384 1 4 16 64 256 1024 4096 16384
Message Sizes Message Sizes
Figure 12. 10® Messages, 1 App. Thread, 2 Message Handlers.
4096 T T T T T T T T T
Loopback Cloud +—+— Loopback Cloud +—+— -4 10000
Loopback Cluster —&—i Loopback Cluster —&—i

— Ethernet Cloud (5 GBit/s) Ethernet Cloud (5 GBit/s) r

4 1024 Ethernet Cluster (1 GBit/s) —%— T Ethernet Cluster (1 GBit/s) —%—

- InfiniBand Cluster (56 GBit/s) —H&— *K InfiniBand Cluster (56 GBit/s) —H— {1

3 */%/ 1000 g

£ 256 e 1 @

- — s

o —E kK%K =

2 f 3

[=}

& 64 1 T 00 5

g g BB

= ’b%iﬁ;ﬁ\w M 10

4 ,
1 1 1 1 1 1 L L = 1 1 1
1 4 16 64 256 1024 4096 16384 1 4 16 64 256 1024 4096 16384
Request Sizes Request Sizes
Figure 13. 107 Requests, 4 App. Threads, 2 Message Handlers.
results gathered with Loopback and DXNet performs strong o~ . .,

. . . y —+— P
especially with InfiniBand (RTT < 10 ps, throughput > 9 1200 | throughput —— N 1x106
GByte/s full-duplex). 1000 5

a 800000 &
C. Yahoo! Cloud Serving Benchmark g 800 2
& 600000 ©
The Yahoo! Cloud Serving Benchmark (YCSB) was de- 2 600 2
. o
signed to quantitatively compare dlstrlbuted.servmg storage 2 400000 E
systems [33]. The benchmark offers a set of simple operations g 400 8
(reads, writes, range scans) and a tabular key-value data model 200000 &
‘ : . g 200
to evaluate online storage systems regarding their elasticity,
availability and replication. Furthermore, YCSB is easily ex- 0 . .

tensible for new storage systems and new workloads. For our
evaluation, we used the in-memory key-value store DXRAM
[34] which utilizes DXNet and created an individual workload:
one 64-byte object per key, 10% keys, uniform distribution,
90 % read and 10 % write operations, 107 operations. The
tests were run in the Microsoft Azure cloud with one storage
server and an increasing number of client servers (maximum
16) which each hosted up to 80 client threads.

Fig. 14 shows the average operation latency and throughput
with 10 to 1280 client threads. The operation latency starts
at around 230 ps which is in line with previous latency
measurements. The latency grows slowly up to 480 client
threads but then exponentially indicating server congestion.
The throughput rises up to 640 client threads with more than
one million operations per second and remains stable with
more client threads.

The evaluation with YCSB shows DXNet’s high perfor-
mance for a client-server scenario (one server can serve more
than 1000 clients).

10 100 1000
Number of Client Threads

Figure 14. 6 Message Handlers

X. CONCLUSIONS

Many big data applications as well as large scale interactive
applications are written in Java and aggregate the resources
of many servers in a cloud data center, high performance
cluster or private cluster. Efficient network communication is
very important for these application domains. RMI while being
comfortable to use is not fast enough for these applications.
Plain sockets are difficult to handle especially if efficiency and
scalability need to be addressed. MPI was designed for spawn-
ing processes with finite runtime in a static environment. Thus,
multi-threading performance and support for adding/removing
nodes to an existing environment are limited.

In this paper, we proposed DXNet, a Java open-source
network library complementing the communication spectrum.

DXNet provides fast parallel serialization for Java objects,
automatic connection management, automatic message ag-
gregation and an event-driven message receiving approach
including a concurrent deserialization. DXNet offers high-
throughput asynchronous messaging as well as synchronous
request/response communication with very low latency. Fi-
nally, its architecture is open for supporting different transport
protocols. It already supports TCP with Java.nio and reliable
verbs for Infiniband. DXNet achieves high performance and
low latency by using lock-free data structures, zero-copy and
zero-allocation. The proposed ring buffer and queue structures
are complemented by different thread parking strategies guar-
anteeing low latency by avoiding CPU overload.

Evaluations on a private cluster and in the Microsoft Azure
cloud show message processing times of sub 300 ns resulting
in throughputs of up to 16 GByte/s which saturate the memory
bandwidth of a typical cloud instance. For the request/response
pattern, DXNet is able to provide sub 10 ps RTT latency using
the InfiniBand transport (sub 4 us over Loopback). Finally,
DXNet is also able to efficiently handle highly concurrent
processing of many small messages resulting in throughput
saturations for Ethernet with 256 bytes payload and InfiniBand
with 1-2 KB payload.

The InfiniBand transport IBDXNet is work in progress and
final results will be published separately (throughput: >10.4
GByte/s). Future work also includes more experiments at larger
scales including comparisons with other network middlewares,
as well as evaluations using a 100 GBit/s InfiniBand network.

REFERENCES

[1] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at facebook-scale,” Proc. VLDB
Endow., vol. 8, pp. 1804-1815, Aug. 2015.

[2] M. S. Engler, M. El-Kebir, J. Mulder, A. E. Mark, D. P. Geerke, and
G. W. Klau, “Enumerating common molecular substructures,” PeerJ
Preprints, vol. 5, p. €3250v1, Sep. 2017.

[3] P. Satapathy, J. Dave, P. Naik, and M. Vutukuru, “Performance com-
parison of state synchronization techniques in a distributed Ite epc,” in
IEEE Conf. on Network Function Virtualization and Software Defined
Networks, 2017.

[4] S. Ekanayake, S. Kamburugamuve, and G. C. Fox, “Spidal java: High
performance data analytics with java and mpi on large multicore hpc
clusters,” in Proceedings of the 24th High Performance Computing
Symposium, 2016, pp. 3:1-3:8.

[5] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107-113, Jan. 2008.

[6] “Cassandra,” http://cassandra.apache.org, accessed: 2018-03-14.

[7]1 “Interactive query with apache hive on
http://hortonworks.com/hadooptutorial/supercharging-
interactivequeries-hive-tez/, accessed: 2018-03-14.

[8] “Impala - cloudera,” https://www.cloudera.com/products/open-
source/apache-hadoop/impala.html, accessed: 2018-03-14.

”

apache tez,

[91 S. Microsystems, “Java remote method invocation specification,”
https://docs.oracle.com/javase/7/docs/platform/rmi/spec/rmiTOC.html,
accessed: 2018-03-14.

[10] Oracle, “Package java.net,” https://docs.oracle.com/javase/8/docs/api/
java/net/package-summary.html, accessed: 2018-03-14.

[11] S. Mintchev, “Writing programs in javampi,” University of Westminster,
Tech. Rep. MAN-CSPE-02, Oct. 1997.

[12] K. Beineke, S. Nothaas, and M. Schoettner, “Dxnet project on github,”
https://github.com/hhu-bsinfo/dxnet, accessed: 2018-03-14.

[13] W. Zhu, C.-L. Wang, and F. C. M. Lau, “Jessica2: a distributed
java virtual machine with transparent thread migration support,” in

Proceedings. IEEE International Conference on Cluster Computing,
2002, pp. 381-388.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

[31]

(32]

(33]

[34]

face

S. P. Ahuja and R. Quintao, “Performance evaluation of java rmi:
A distributed object architecture for internet based applications,” in
Proceedings of the 8th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, ser.
MASCOTS ’00, 2000, pp. 565-569.

M. Philippsen, B. Haumacher, and C. Nester, “More efficient serializa-
tion and rmi for java,” Concurrency: Practice and Experience, vol. 12,
pp- 495-518, 2000.

J. Maassen, R. V. Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C. Jac-
bos, and R. Hofman, “Efficient java rmi for parallel programming,”
ACM Trans. Program. Lang. Syst., vol. 23, pp. 747-775, Nov. 2001.

C. Nester, M. Philippsen, and B. Haumacher, “A more efficient rmi
for java,” in Proc. of the ACM 1999 Conf. on Java Grande, 1999, pp.
152-159.

M. P. I Forum, Ed., MPI: A Message-passing Inter-
Standard, Version 3.1 ; June 4, 2015. High-
Performance Computing Center, 2015, 2015. [Online]. Available:
https://books.google.de/books?id=Fbv7jwEACAAJ

A. Shafi, B. Carpenter, and M. Baker, “Nested parallelism for multi-
core hpc systems using java,” in Journal of Parallel and Distributed
Computing, 2009, pp. 532-545.

M. Baker, B. Carpenter, G. Fox, S. H. Ko, and X. Li, “mpijava: A
java interface to mpi,” http://www.hpjava.org/mpiJava.html, accessed:
2018-03-14.

G. "Dézsa, S. Kumar, P. Balaji, D. Buntinas, D. Goodell, W. Gropp,
J. Ratterman, and R. Thakur, “Enabling concurrent multithreaded mpi
communication on multicore petascale systems,” in "Recent Advances
in the Message Passing Interface”, 2010, pp. 11-20.

H. V. Dang, S. Seo, A. Amer, and P. Balaji, “Advanced thread
synchronization for multithreaded mpi implementations,” in 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), May 2017, pp. 314-324.

R. Latham, R. Ross, and R. Thakur, “Can mpi be used for persistent
parallel services?” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface. Springer Berlin Heidelberg, 2006, pp.
275-284.

J. A. Zounmevo, D. Kimpe, R. Ross, and A. Afsahi, “Using mpi in high-
performance computing services,” in Proceedings of the 20th European
MPI Users’ Group Meeting, ser. EuroMPI 13, 2013, pp. 43-48.

K. Beineke, S. Nothaas, and M. Schoettner, “Fast parallel recovery of
many small in-memory objects,” in International Conference on Parallel
and Distributed Systems (ICPADS), vol. 23, in press.

Oracle, “Java i/o, nio, and nio.2,”
https://docs.oracle.com/javase/8/docs/technotes/guides/io/index.html,
accessed: 2018-03-14.

R. Hitchens, Java NIO. Sebastopol, CA, USA: O’Reilly Media, 2009.

G. L. Taboada, J. Tourifio, and R. Doallo, “Java fast sockets: Enabling
high-speed java communications on high performance clusters,” Com-
put. Commun., vol. 31, pp. 4049-4059, Nov. 2008.

G. L. Taboada, J. Tourino, and R. Doallo, “High performance java
sockets for parallel computing on clusters,” in Parallel and Distributed
Processing Symposium, 2007, pp. 1-8.

L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza, M. Hauswirth, and
N. Nystrom, “Use at your own risk: The java unsafe api in the wild,”
SIGPLAN Not., vol. 50, pp. 695-710, Oct. 2015.

R. Riggs, J. Waldo, A. Wollrath, and K. Bharat, “Pickling state in the
javatm system,” in Proc. of the 2nd Conf. on USENIX Conf. on Object-
Oriented Technologies, 1996, pp. 19-19.

“Kryo - java serialization and cloning: fast, efficient, automatic.”
https://github.com/EsotericSoftware/kryo, accessed: 2018-03-14.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proc. of the Ist
ACM symposium on Cloud computing, 2010, pp. 143-154.

K. Beineke, S. Nothaas, and M. Schoettner, “High throughput log-
based replication for many small in-memory objects,” in IEEE 22nd
International Conference on Parallel and Distributed Systems, 2016,
pp. 535-544.

